-
磁通钉扎性能对GdBa2Cu3O7-δ超导块材的实际应用具有重要的影响, 而引入合适的第二相粒子可以改善GdBa2Cu3O7-δ 超导块材的磁通钉扎性能.本文采用顶部籽晶熔融织构法成功地制备出纳米微粒BaFe12O19(x BaFe12O19 (x=0, 0.2 mol%, 0.4 mol%, 0.8 mol%)+ 10 wt%Ag2O+ 0.5 wt%Pt. 通过研究不同掺杂量的BaFe12O19微粒对GdBa2Cu3O7-δ 超导块材微观结构和超导性能的影响, 结果表明当掺杂量为0.2 mol%时, 样品的临界电流密度几乎在整个外加磁场下都有明显的提高.在零场下, 临界电流密度达到5.5× 104 A/cm2. 纳米微粒BaFe12O19不仅可以保持掺杂前的化学组成, 作为有效的钉扎中心存在于超导块材中, 并且能够改善Gd2BaCuO5粒子的分布和细化Gd2BaCuO5粒子, 使Gd2BaCuO5粒子的平均粒径由未掺杂时的1.4 μ m减小到掺杂后的0.79 μ m, 进而提高了超导块材的临界电流密度和俘获磁场, 明显提高了GdBa2Cu3O7-δ 超导块材的超导性能.临界温度TC也有所提升, 并能够维持在92.5 K左右. 该结果为进一步研究纳米磁通钉扎中心的引入并改善GdBa2Cu3O7-δ 超导块材的性能有着重要的意义.
-
关键词:
- GdBa2Cu3O7-δ超导块材 /
- 顶部籽晶熔融织构方法 /
- 临界电流密度 /
- 纳米微粒BaFe12O19
The flux pinning performance of the superconductor is important for the applications of the GdBa2Cu3O7-δ superconductor bulk. To introduce the suitable secondary phase into the GdBa2Cu3O7-δ matrix is an important way to enhance the performance of flux pinning. By using top-seeded melt texture growth process, single domain GdBa2Cu3O7-δ superconductor bulks (20 mm in diameter) doping with different quantities of BaFe12O19 nano-particles (12O19(x=0, 0.2 mol%, 0.4 mol%, 0.8 mol%)+ 10 wt% Ag2O+ 0.5 wt% Pt. The effects of different quantities of BaFe12O19 nano-particles on superconducting properties and microstructure are also investigated. The result shows that the critical current density, JC, with 0.2 mol% BaFe12O19 additions reaches a maximum value in the zero field, which is about 5.5 × 104 A/cm2. And the critical current density JC, almost increases in the whole field compared with those of the undoped bulks. The microstructure and chemical composition of GdBa2Cu3O7-δ bulk with BaFe12O19 nano-particles are implemented by the SEM-EDS technique. It is found that BaFe12O19 nano-particles keeps a similar form to that of the precursor in the final superconductor bulk. The average size of Gd2BaCuO5 particles is reduced from 1.4 μm in the undoped bulk to 0.79 μm in the bulk with 0.2 mol% BaFe12O19 nano-particles. We suggest that BaFe12O19 nano-particles may form effective magnetic flux centers in the bulks, which affects the homogeneous distribution and refinement of Gd2BaCuO5 particles. Therefore, the improvements in the critical current density and the trapped field are observed in the GdBa2Cu3O7-δ bulk with low-level doped content. The superconducting transition temperature TC, can be maintained at around 92.5 K. However, with the addition of 0.4 mol% BaFe12O19 nano-particles, the critical current density and superconducting transition temperature decrease obviously. It indicates that the excessive addition of BaFe12O19 nano-particles may affect the superconductivity properties to reduce the critical current density, JC. The result indicates that the low-level content BaFe12O19 nano-particles can be an effective second phase for the improvement of the GdBa2Cu3O7-δ superconductor bulks, which is very important for the further enhancing the superconducting properties of GdBa2Cu3O7-δ bulks by introducing the flux pinning of nano-particles.-
Keywords:
- GdBa2Cu3O7-δ superconductor bulks /
- top-seeded melt texture process /
- critical current density /
- BaFe12O19 nano-particles
[1] Zhou D F, Izumi M, Miki M 2012 Supercond. Sci. Technol. 25 103001
[2] Werfel F, Floegel U, Rothfeld D R 2012 Supercond. Sci. Technol. 25 014007
[3] Wang Q L 2008 High Magnetic Field Superconducting Magnet (Beijing: Science Press) pp20-70 (in Chinese) [王秋良 2008 高磁场超导磁体科学 (北京: 科学出版社)第20–70页]
[4] Cai Y Q, Yao X, Li G 2006 Acta Phys. Sin. 55 844 (in Chinese) [蔡衍卿, 姚忻, 李刚 2006 55 844]
[5] Inanira F, Yildizb S, Ozturkc K, Celebic S 2013 Chin. Phys. B 22 077402
[6] Cardwell D A, Babu N H, Shi Y H, Iida K 2006 Supercond. Sci. Technol. 197 S510
[7] Babu N H, Reddy E S, Cardwell D A 2003 Supercond. Sci. Technol. 16 L44
[8] Wang M, Yang W M, Zhang X J, Tang Y N, Wang G F 2012 Acta Phys. Sin. 61 196102 (in Chinese) [王妙, 杨万民, 张晓菊, 唐艳妮, 王高峰 2012 61 196102]
[9] Li J W, Yang W M, Wang M, Guo Y X, Zhong L F 2015 J. Supercond. Nov. Magn. 28 1725
[10] Hu S B, Xu K X, Cao Y, Zuo P X, Lian B W 2012 Chin. J. Low Temperature Phys. 34 297 (in Chinese) [胡顺波, 徐克西, 曹越, 左鹏翔, 连博文 2012低温 34 297]
[11] Zhou D F, Izumi M, Fujimoto T, Zhang Y F, Zhou W L, Xu K 2015 IEEE Trans. Appl. Supercond. 25 6800204
[12] Muralidhar M, Sakai N, Murakami M, Hirabayashi I 2008 Appl. Phys. Lett. 92 162512
[13] Xu K, Tsuzuki K, Hara S, Zhou D, Zhang Y F, Murakami M, Nishio-Hamane D, Izumi M 2011 Supercond. Sci. Technol. 24 085001
[14] Guo L P, Yang W M, Guo Y X, Chen L P, Li Q 2015 Acta Phys. Sin. 64 077401 (in Chinese) [郭莉萍, 杨万民, 郭玉霞, 陈丽平, 李强 2015 64 077401]
[15] Wang M, Yang W M, Ma J, Tang Y N, Zhang X J, Wang G F 2012 Sci. Sin.: Phys. Mech. Astron. 42 346 (in Chinese) [王妙, 杨万民, 马俊, 唐艳妮, 张晓菊, 王高峰2012 中国科学: 物理学 力学 天文学 42 346]
[16] Wimbush S C, Durrell J H, Tsai C F, Wang H, Jia Q X, Blamire M G, MacManus-Driscoll J L 2010 Supercond. Sci. Technol. 23 045019
[17] Li B Z, Zhou D F, Xu K, Tsuzuki K, Zhang J C, Izumi M 2014 Physica C 496 28
[18] Zhang Y, Izumi M, Li Y J, Murakami M, Gao T, Liu Y S, Li P L 2011 Physica C 471 840
[19] Chen D X, Goldfarb R B 1989 J. Appl. Phys. 66 2489
[20] Tang Y N, Yang W M, Liang W, Wang M, Zhang X J, Li J W, Wang G F 2012 Chin. J. Low Temperature Phys. 34 211 (in Chinese) [唐艳妮, 杨万民, 梁伟, 王妙, 张晓菊, 李佳伟, 王高峰 2012低温 34 211]
[21] Li P L, Wang Y Y, Tian Y T, Wang J, Niu X L, Wang J X, Wang D D, Wang X X 2008 Chin. Phys. B 17 3484
[22] Zhou D F, Xu K, Hara S, Li B Z, Izumi M 2013 Trans. Nonferrous Met. Soc. China 23 2042
[23] Xu C, Hu A, Sakai N, Izumi M, Hirabayashi I 2006 Physica C 445 357
[24] Muralidhar M, Sakai N, Jirsa M, Murakami M, Hirabayashi I 2008 Appl. Phys. Lett. 92 162512
[25] Koblischka M R, van Dalen A J J, Higuchi T, Yoo S I, Murakami M 1998 Phys. Rev. B 58 2863
[26] Hara S, Zhou D F, Li B Z, Izumi M 2013 IEEE Trans. Appl. Supercond. 23 7200804
[27] Li B Z, Xu K, Hara S, Zhou D F, Zhang Y F, Izumi M 2012 Physica C 475 51
[28] Xu K, Zhou D F, Li B Z, Hara S, Deng Z G, Izumi M 2015 Physica C 510 54
[29] Zhang Y F, Peng L Q, Zhou W L, Zhou X J, Jia L L, Izumi M 2015 IOP Conf. Series: Materials Science and Engineering 87 012077
[30] Zhang Y F, Izumi M, Kimura Y, Xu Y 2009 Physica C: Supercond. Appl. 469 1169
-
[1] Zhou D F, Izumi M, Miki M 2012 Supercond. Sci. Technol. 25 103001
[2] Werfel F, Floegel U, Rothfeld D R 2012 Supercond. Sci. Technol. 25 014007
[3] Wang Q L 2008 High Magnetic Field Superconducting Magnet (Beijing: Science Press) pp20-70 (in Chinese) [王秋良 2008 高磁场超导磁体科学 (北京: 科学出版社)第20–70页]
[4] Cai Y Q, Yao X, Li G 2006 Acta Phys. Sin. 55 844 (in Chinese) [蔡衍卿, 姚忻, 李刚 2006 55 844]
[5] Inanira F, Yildizb S, Ozturkc K, Celebic S 2013 Chin. Phys. B 22 077402
[6] Cardwell D A, Babu N H, Shi Y H, Iida K 2006 Supercond. Sci. Technol. 197 S510
[7] Babu N H, Reddy E S, Cardwell D A 2003 Supercond. Sci. Technol. 16 L44
[8] Wang M, Yang W M, Zhang X J, Tang Y N, Wang G F 2012 Acta Phys. Sin. 61 196102 (in Chinese) [王妙, 杨万民, 张晓菊, 唐艳妮, 王高峰 2012 61 196102]
[9] Li J W, Yang W M, Wang M, Guo Y X, Zhong L F 2015 J. Supercond. Nov. Magn. 28 1725
[10] Hu S B, Xu K X, Cao Y, Zuo P X, Lian B W 2012 Chin. J. Low Temperature Phys. 34 297 (in Chinese) [胡顺波, 徐克西, 曹越, 左鹏翔, 连博文 2012低温 34 297]
[11] Zhou D F, Izumi M, Fujimoto T, Zhang Y F, Zhou W L, Xu K 2015 IEEE Trans. Appl. Supercond. 25 6800204
[12] Muralidhar M, Sakai N, Murakami M, Hirabayashi I 2008 Appl. Phys. Lett. 92 162512
[13] Xu K, Tsuzuki K, Hara S, Zhou D, Zhang Y F, Murakami M, Nishio-Hamane D, Izumi M 2011 Supercond. Sci. Technol. 24 085001
[14] Guo L P, Yang W M, Guo Y X, Chen L P, Li Q 2015 Acta Phys. Sin. 64 077401 (in Chinese) [郭莉萍, 杨万民, 郭玉霞, 陈丽平, 李强 2015 64 077401]
[15] Wang M, Yang W M, Ma J, Tang Y N, Zhang X J, Wang G F 2012 Sci. Sin.: Phys. Mech. Astron. 42 346 (in Chinese) [王妙, 杨万民, 马俊, 唐艳妮, 张晓菊, 王高峰2012 中国科学: 物理学 力学 天文学 42 346]
[16] Wimbush S C, Durrell J H, Tsai C F, Wang H, Jia Q X, Blamire M G, MacManus-Driscoll J L 2010 Supercond. Sci. Technol. 23 045019
[17] Li B Z, Zhou D F, Xu K, Tsuzuki K, Zhang J C, Izumi M 2014 Physica C 496 28
[18] Zhang Y, Izumi M, Li Y J, Murakami M, Gao T, Liu Y S, Li P L 2011 Physica C 471 840
[19] Chen D X, Goldfarb R B 1989 J. Appl. Phys. 66 2489
[20] Tang Y N, Yang W M, Liang W, Wang M, Zhang X J, Li J W, Wang G F 2012 Chin. J. Low Temperature Phys. 34 211 (in Chinese) [唐艳妮, 杨万民, 梁伟, 王妙, 张晓菊, 李佳伟, 王高峰 2012低温 34 211]
[21] Li P L, Wang Y Y, Tian Y T, Wang J, Niu X L, Wang J X, Wang D D, Wang X X 2008 Chin. Phys. B 17 3484
[22] Zhou D F, Xu K, Hara S, Li B Z, Izumi M 2013 Trans. Nonferrous Met. Soc. China 23 2042
[23] Xu C, Hu A, Sakai N, Izumi M, Hirabayashi I 2006 Physica C 445 357
[24] Muralidhar M, Sakai N, Jirsa M, Murakami M, Hirabayashi I 2008 Appl. Phys. Lett. 92 162512
[25] Koblischka M R, van Dalen A J J, Higuchi T, Yoo S I, Murakami M 1998 Phys. Rev. B 58 2863
[26] Hara S, Zhou D F, Li B Z, Izumi M 2013 IEEE Trans. Appl. Supercond. 23 7200804
[27] Li B Z, Xu K, Hara S, Zhou D F, Zhang Y F, Izumi M 2012 Physica C 475 51
[28] Xu K, Zhou D F, Li B Z, Hara S, Deng Z G, Izumi M 2015 Physica C 510 54
[29] Zhang Y F, Peng L Q, Zhou W L, Zhou X J, Jia L L, Izumi M 2015 IOP Conf. Series: Materials Science and Engineering 87 012077
[30] Zhang Y F, Izumi M, Kimura Y, Xu Y 2009 Physica C: Supercond. Appl. 469 1169
计量
- 文章访问数: 5925
- PDF下载量: 81
- 被引次数: 0