-
本文报道了作者提出的阶梯AlGaN外延层新型AlGaN/GaN HEMTs结构的实验结果. 实验利用感应耦合等离子体刻蚀(ICP)刻蚀栅边缘的AlGaN外延层, 形成阶梯的AlGaN 外延层结构, 获得浓度分区的沟道2DEG, 使得阶梯AlGaN外延层边缘出现新的电场峰, 有效降低栅边缘的高峰电场, 从而优化了AlGaN/GaN HEMTs器件的表面电场分布. 实验获得了阈值电压-1.5 V的新型AlGaN/GaN HEMTs器件. 经过测试, 同样面积的器件击穿电压从传统结构的67 V提高到新结构的106 V, 提高了58%左右; 脉冲测试下电流崩塌量也比传统结构减少了30%左右, 电流崩塌效应得到了一定的缓解.In this paper, experimental results are reported about the new Al0.25Ga0.75N/GaN high electron mobility transistor (HEMT) with a step AlGaN layer. The rule of 2DEG concentration variation with the thickness of AlGaN epitaxial layer has been applied to the new AlGaN/GaN HEMTs: The step AlGaN layer is formed at the gate edge by inductively coupled plasma etching, the 2DEG concentration in the etched region is much lower than the other parts of the device. A new electric field peak appears at the corner of the step AlGaN layer. The high electric field at the gate edge is decreased effectively due to the emergence of the new electric field peak, and this optimizes the surface electric field of the new AlGaN/GaN HEMTs. The new devices have the same threshold voltage and transconductance as the conventional structure, -1.5 V and 150 mS/mm. That means, the step AlGaN layer does not affect the forward characteristics of the AlGaN/GaN HEMTs. As the more uniform surface electric field distribution usually leads to a higher breakdown voltage (BV), with the same gate to drain length LGD=4 m, the BV can be improved by 58% for the proposed Al0.25Ga0.75N/GaN HEMTs as compared with the conventional structure. At VGS=1 V, the saturation currents (Isat) is 230 mA/mm for the conventional Al0.25Ga0.75N/GaN HEMT and 220 mA/mm for the partially etched Al0.25Ga0.75N/GaN HEMT (LEtch=4 m, LGD=4 m). The decrease of Isat is at most 10 mA/mm. However, as the BV has a significant enhancement of almost 40 V, these drawbacks are small enough to be acceptable. During the pulse I-V test, the current collapse quantity of the conventional structure is almost 40% of the maximum IDS(DC), but this quantity in the new devices is only about 10%, thus the current collapse effect in Al0.25Ga0.75N/GaN HEMTs has a significant remission for a step AlGaN layer. And as the high electric field peak at the gate edge is decreased, the effect of the gate electrode on electron injection caused by this electric field peak is also included. The injected electrons may increase the leakage current during the off-state, and these injected electrons would form the surface trapped charge as to decrease the 2DEG density at the gate. As a result, the output current and the transconductance would decrease due to the decreased electron density during the on-state. That means, with the region partially etched, the electron injection effect of the gate electrode would be remissed and the stability of Schottky gate electrode would be improved. In addition, due to the decrease of the high electric field at the gate edge, the degradation of the device, which is caused by the high electric field converse piezoelectric effect, will be restrained. The stability of the partially etched AlGaN/GaN HEMT will become better.
-
Keywords:
- AlGaN/GaN /
- surface electric field /
- breakdown voltage /
- current collapse
[1] Kamath A, Patil T, Adari R, Bhattacharya I, Ganguly S, Aldhaheri R W, Hussain M A, Dipankar S 2012 IEEE Electron Device Lett. 33 1690
[2] Hidetoshi I, Daisuke S, Manabu Y, Yasuhiro U, Hisayoshi M, Tetsuzo U, Tsuyaoshi T, Daisuke U 2008 IEEE Transactions on Electron Devices 29 1087
[3] Johnson J. W., Zhang A. P., Luo W B, Fan R, Pearton S. J., Park S. S., Park Y. J., Chyi J I 2003 IEEE Electron. Device Lett. 24 32
[4] Huang T D, Zhu X L, Wong K M, Lau K M 2012 IEEE Electron Device Lett. 33 212
[5] Corrion A L, Poblenz C, Wu F, Speck J S 2008 Journal Appl. Phy.130 093529
[6] Hidetoshi I, Daisuke S, Manabu Y, Yasuhiro U, Hisayoshi M, Tetsuzo U, Tsuyoshi T, Daisuke U 2008 IEEE Electron Device Lett. 29 1087
[7] Zhou C H, Jiang Q M, Huang S, Chen K J 2012 IEEE Electron Device Lett. 33 1132
[8] Corrion A L, Poblenz C, Wu F, Speck J S 2008 Journal of Appl. Phys.130 093529
[9] Lee J H, Yoo J K, Kang H S, Lee J H 2012 IEEE Electron Device Lett. 33 1171
[10] Lee H S, Daniel P, Sun M, Gao X, Guo S P, Tomas P 2012 IEEE Electron Device Lett. 33 982
[11] Duan B X, Yang Y T 2012 Sci. China Inf. Sci. 55 473
[12] Duan B X, Yang Y T 2012 Micro & Nano Letter 7 9
[13] Subramaniam A, Takashi E, Lawrence S, Hiroyasu I 2006 Japanese Journal of Applied Physics 45 L220
[14] Ando Y., Okamoto Y., Miyamoto H., Nakayama T., Inoue T., Kuzuhara M 2003 IEEE Electron Device Lett. 24 289
[15] Benbakhti B, Rousseau M, De Jaeger J C 2007 Microelectronics Journal 38 7
[16] Jin D, Joh J, Krishnan S, Tipirneni N, Pendharkar S, del Alamo J A 2013 IEEE International Electron Devices Meeting Washington DC. USA Dec. 9-11, 2013, p 6.2.16.2.4
[17] Injun H, Jongseob K, Soogine C, Hyun-Sik C, Sun-Kyu H, Jaejoon O, Jai Kwang S, U-In C 2013 IEEE Electron Device Lett. 34 12 1494
[18] Arulkumaran S, Liu Z H, Ng G I, Cheong W C, Zeng R, Bu J, Wang H, Radhakrishnan K, Tan C L 2007 Thin Solid Films. 515 4517
[19] Chen X B, Johnny K O S 2001 IEEE Transactions on Electron Devices 48 344
[20] Duan B X, Zhang B, Li Z J 2006 IEEE Electron Device Lett. 27 377
[21] Duan B X, Yang Y T, Zhang B, Hong X F 2009 IEEE Electron Device Lett. 30 1329
[22] Duan B X, Yang Y T, Zhang B 2009 IEEE Electron Device Lett. 30 305
[23] Duan B X, Yang Y T 2011 IEEE Transactions on Electron Devices 58 2057
[24] Duan B X, Yang Y T, Zhang B 2010 Solid-State Electronics 54 685
[25] Duan B X, Yang Y T, Chen K J 2012 Acta Phys. Sin. 61 247302 (in Chinese) [段宝兴, 杨银堂, 陈敬 2012 61 247302]
[26] Duan B X, Yang Y T, Kevin J. Chen 2012 Acta Phys. Sin. 61 227302 (in Chinese) [段宝兴, 杨银堂, 陈敬 2012 61 227302]
[27] Di S, Jie L, Zhiqun C, Wilson C. W. T, Kei May L, Kevin J. Chen. 2007 IEEE Electron Device Lett. 28 189
[28] Udrea F, Popescu A, Milne W I 1998 Electronics Letters 34 808
[29] Smorchkova I P, Elsass C R, Ibbetson J P, Heying B, Fini P, Den Baars S P, Speck J S, Mishra U K 1999 Journal of Applied Physics 86 4520
[30] Yifei Z, Smorchkova I P, Elsass C R, Stacia K, Ibbetson J P, Jasprit S 2000 Appl. Phys. Lett.87 7981
[31] Ibbetson J P, Fini P T, Ness K D, DenBaars S P, SpeckJ S, Mishra U K 2000 Appl. Phys. Lett. 77 250
[32] Duan B X, Yang Y T 2014 Acta Phys. Sin. 63 057302
[33] DESSIS, ISE TCAD Manuals Release 10., Integrated Systems Engineering, Zurich, Switzerland, 2004
-
[1] Kamath A, Patil T, Adari R, Bhattacharya I, Ganguly S, Aldhaheri R W, Hussain M A, Dipankar S 2012 IEEE Electron Device Lett. 33 1690
[2] Hidetoshi I, Daisuke S, Manabu Y, Yasuhiro U, Hisayoshi M, Tetsuzo U, Tsuyaoshi T, Daisuke U 2008 IEEE Transactions on Electron Devices 29 1087
[3] Johnson J. W., Zhang A. P., Luo W B, Fan R, Pearton S. J., Park S. S., Park Y. J., Chyi J I 2003 IEEE Electron. Device Lett. 24 32
[4] Huang T D, Zhu X L, Wong K M, Lau K M 2012 IEEE Electron Device Lett. 33 212
[5] Corrion A L, Poblenz C, Wu F, Speck J S 2008 Journal Appl. Phy.130 093529
[6] Hidetoshi I, Daisuke S, Manabu Y, Yasuhiro U, Hisayoshi M, Tetsuzo U, Tsuyoshi T, Daisuke U 2008 IEEE Electron Device Lett. 29 1087
[7] Zhou C H, Jiang Q M, Huang S, Chen K J 2012 IEEE Electron Device Lett. 33 1132
[8] Corrion A L, Poblenz C, Wu F, Speck J S 2008 Journal of Appl. Phys.130 093529
[9] Lee J H, Yoo J K, Kang H S, Lee J H 2012 IEEE Electron Device Lett. 33 1171
[10] Lee H S, Daniel P, Sun M, Gao X, Guo S P, Tomas P 2012 IEEE Electron Device Lett. 33 982
[11] Duan B X, Yang Y T 2012 Sci. China Inf. Sci. 55 473
[12] Duan B X, Yang Y T 2012 Micro & Nano Letter 7 9
[13] Subramaniam A, Takashi E, Lawrence S, Hiroyasu I 2006 Japanese Journal of Applied Physics 45 L220
[14] Ando Y., Okamoto Y., Miyamoto H., Nakayama T., Inoue T., Kuzuhara M 2003 IEEE Electron Device Lett. 24 289
[15] Benbakhti B, Rousseau M, De Jaeger J C 2007 Microelectronics Journal 38 7
[16] Jin D, Joh J, Krishnan S, Tipirneni N, Pendharkar S, del Alamo J A 2013 IEEE International Electron Devices Meeting Washington DC. USA Dec. 9-11, 2013, p 6.2.16.2.4
[17] Injun H, Jongseob K, Soogine C, Hyun-Sik C, Sun-Kyu H, Jaejoon O, Jai Kwang S, U-In C 2013 IEEE Electron Device Lett. 34 12 1494
[18] Arulkumaran S, Liu Z H, Ng G I, Cheong W C, Zeng R, Bu J, Wang H, Radhakrishnan K, Tan C L 2007 Thin Solid Films. 515 4517
[19] Chen X B, Johnny K O S 2001 IEEE Transactions on Electron Devices 48 344
[20] Duan B X, Zhang B, Li Z J 2006 IEEE Electron Device Lett. 27 377
[21] Duan B X, Yang Y T, Zhang B, Hong X F 2009 IEEE Electron Device Lett. 30 1329
[22] Duan B X, Yang Y T, Zhang B 2009 IEEE Electron Device Lett. 30 305
[23] Duan B X, Yang Y T 2011 IEEE Transactions on Electron Devices 58 2057
[24] Duan B X, Yang Y T, Zhang B 2010 Solid-State Electronics 54 685
[25] Duan B X, Yang Y T, Chen K J 2012 Acta Phys. Sin. 61 247302 (in Chinese) [段宝兴, 杨银堂, 陈敬 2012 61 247302]
[26] Duan B X, Yang Y T, Kevin J. Chen 2012 Acta Phys. Sin. 61 227302 (in Chinese) [段宝兴, 杨银堂, 陈敬 2012 61 227302]
[27] Di S, Jie L, Zhiqun C, Wilson C. W. T, Kei May L, Kevin J. Chen. 2007 IEEE Electron Device Lett. 28 189
[28] Udrea F, Popescu A, Milne W I 1998 Electronics Letters 34 808
[29] Smorchkova I P, Elsass C R, Ibbetson J P, Heying B, Fini P, Den Baars S P, Speck J S, Mishra U K 1999 Journal of Applied Physics 86 4520
[30] Yifei Z, Smorchkova I P, Elsass C R, Stacia K, Ibbetson J P, Jasprit S 2000 Appl. Phys. Lett.87 7981
[31] Ibbetson J P, Fini P T, Ness K D, DenBaars S P, SpeckJ S, Mishra U K 2000 Appl. Phys. Lett. 77 250
[32] Duan B X, Yang Y T 2014 Acta Phys. Sin. 63 057302
[33] DESSIS, ISE TCAD Manuals Release 10., Integrated Systems Engineering, Zurich, Switzerland, 2004
计量
- 文章访问数: 5881
- PDF下载量: 266
- 被引次数: 0