搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

近地面大气光学湍流外尺度的实验研究

王倩 梅海平 钱仙妹 饶瑞中

引用本文:
Citation:

近地面大气光学湍流外尺度的实验研究

王倩, 梅海平, 钱仙妹, 饶瑞中

Experimental investigation of the outer scale in atmospheric optical turbulence near the ground

Wang Qian, Mei Hai-Ping, Qian Xian-Mei, Rao Rui-Zhong
PDF
导出引用
  • 分析了含有外尺度的Von-Karman湍流空间相关函数模型, 并利用光纤湍流空间传感阵列的实测数据, 根据拟合算法获得了大气光学湍流空间外尺度的值及日变化, 对模型的适用性进行了实验验证. 将空间相关函数理论与空间多点同步测量的数据相结合, 尽可能清晰地展现了几种适合用相关函数描述的湍涡尺度. 结果表明, 在1.8 m的草地上, 大气光学湍流的外尺度呈现出白天较大、夜间较小的日变化趋势, 正午前后均值约为0.44 m, 夜间约为0.3 m. 有三点需要说明: 其一, 当两点间距恰好等于外尺度时, 其空间相关系数为0.26, 当两点间距超过外尺度之后, 仍具有一定的相关性; 其二, 积分尺度代表了湍涡尺度的平均值, 该值略小于外尺度; 其三, 湍涡的最大尺度所对应的湍流空间相关性为0, 其值略大于外尺度. 不难发现: 湍涡三种尺度的日变化与湍流强度的日变化趋势非常相似. 以空间布点探测的方法获取湍流特征尺度, 结果直观, 而且能够直接验证湍流空间相关函数模型, 所以可在一定程度上促进湍流空间结构特性的研究.
    In this article, the Von-Karman model of turbulence spatial correlation function which contains the parameter of outer scale is analyzed. Then, the experimental data of air refractive index variation obtained from a high quality fiber optical turbulence sensing array are used to evaluate the outer scale of atmospheric optical turbulence as well as its diurnal variation through the algorithm of nonlinear fitting. The results validate the suitability of the Von-Karman model. By combining the theory of correlation function with the spatially distributed and simultaneously measured data, three kinds of turbulence spatial scales described by correlation function are revealed as clearly as possible. Results show that the values of outer scale in atmospheric optical turbulence 1.8 m above the grassland tend to be larger in the daytime and smaller in the night. The mean value around noon is 0.44 m, while in the night it becomes 0.3 m. Here, three of the important views should be noted. Firstly, when the displacement of two points is just equal to the outer scale, their correlation coefficient is 0.26, and when it exceeds the outer scale, there is still a certain value of correlation coefficient. Secondly, the integral scale represents the averaged value of scale in the vortex of optical turbulence. And, it is slightly smaller than the outer scale. Thirdly, when the distance of two points equals the biggest scale of vortex in optical turbulence, the correlation coefficient tends to zero, and the value of biggest scale is slightly bigger than the outer scale. It is easy to find that the diurnal variation tendencies of the three spatial scales are similar to that of intensity in optical turbulence. The method of obtaining the characteristic scales by spatially arranged and simultaneously measured optical turbulence is direct, and the results can be considered as the evidence to prove the models of correlation function including the Von-Karman model. So, it promotes the research on the property of spatial structure to a certain extent.
      通信作者: 梅海平, hpmei@aiofm.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 41205010)资助的课题.
      Corresponding author: Mei Hai-Ping, hpmei@aiofm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 41205010).
    [1]

    Arkadi Z, Ephim G, Norman S K 2010 Opt. Commun. 283 1229

    [2]

    Lukin V P, Nosov V V, Torgaev A V 2014 Appl. Opt. 53 B196

    [3]

    Yi X, Liu Z J, Yue P 2012 Opt. Express 20 4232

    [4]

    Lutomirski R F, Yura H T 1971 Appl. Opt. 10 1652

    [5]

    Lukin V P 2005 Proc. SPIE 5981 598101

    [6]

    Taylor G I 1938 Proc. R. Soc. A 164 476

    [7]

    Liu S D, Liang F M, Liu S K, Xin G J 2008 Atmospheric Turbulence (Beijing: Peking University Press) p47 (in Chinese) [刘式达, 梁福明, 刘式适, 辛国君 2008 大气湍流 (北京: 北京大学出版社) 第47页]

    [8]

    Kulikov V A, Andreeva M S, Koryabin A V, Shmalhausen V I 2012 Appl. Opt. 51 8505

    [9]

    Obukhov A M 1971 Boundary-Layer Meteorol. 2 7

    [10]

    Coulman C E, Vernin J, Coqueugniot Y, Caccia J L 1988 Appl. Opt. 27 155

    [11]

    Frank D E 1998 Radio Sci. 33 895

    [12]

    Wang Q, Mei H P, Qian X M, Rao R Z 2015 Acta Phys. Sin. 64 114212 (in Chinese) [王倩, 梅海平, 钱仙妹, 饶瑞中 2015 64 114212]

    [13]

    Tatarskii V I (translated by Silverman R A) 1961 Wave Propagation in a Turbulent Medium (New York: McGraw-Hill Book company) pp7, 8

    [14]

    Mei H P 2007 Ph. D. Dissertation (Hefei: Hefei Institutes of Physical Science, Chinese Academy of Sciences) (in Chinese) [梅海平 2007 博士学位论文(合肥: 中国科学院合肥物质科学研究院)]

    [15]

    Xiao S M 2014 Ph. D. Dissertation (Hefei: Hefei Institutes of Physical Science, Chinese Academy of Sciences) (in Chinese) [肖树妹 2014 博士学位论文(合肥: 中国科学院合肥物质科学研究院)]

    [16]

    Rao R Z 2012 Modern Atmospheric Optics (Beijing: Science Press) pp155-159 (in Chinese) [饶瑞中 2012 现代大气光学(北京: 科学出版社)第155159页]

    [17]

    Tian Y J, Yang Q S, Yang N, Li B, Chen B, Yang J B 2013 J. Vib. Eng. 26 90 (in Chinese) [田玉基, 杨庆山, 杨娜, 李波, 陈波, 杨靖波 2013 振动工程学报 26 90]

    [18]

    Consortini A, Ronchi L 1972 Appl. Opt. 11 1205

  • [1]

    Arkadi Z, Ephim G, Norman S K 2010 Opt. Commun. 283 1229

    [2]

    Lukin V P, Nosov V V, Torgaev A V 2014 Appl. Opt. 53 B196

    [3]

    Yi X, Liu Z J, Yue P 2012 Opt. Express 20 4232

    [4]

    Lutomirski R F, Yura H T 1971 Appl. Opt. 10 1652

    [5]

    Lukin V P 2005 Proc. SPIE 5981 598101

    [6]

    Taylor G I 1938 Proc. R. Soc. A 164 476

    [7]

    Liu S D, Liang F M, Liu S K, Xin G J 2008 Atmospheric Turbulence (Beijing: Peking University Press) p47 (in Chinese) [刘式达, 梁福明, 刘式适, 辛国君 2008 大气湍流 (北京: 北京大学出版社) 第47页]

    [8]

    Kulikov V A, Andreeva M S, Koryabin A V, Shmalhausen V I 2012 Appl. Opt. 51 8505

    [9]

    Obukhov A M 1971 Boundary-Layer Meteorol. 2 7

    [10]

    Coulman C E, Vernin J, Coqueugniot Y, Caccia J L 1988 Appl. Opt. 27 155

    [11]

    Frank D E 1998 Radio Sci. 33 895

    [12]

    Wang Q, Mei H P, Qian X M, Rao R Z 2015 Acta Phys. Sin. 64 114212 (in Chinese) [王倩, 梅海平, 钱仙妹, 饶瑞中 2015 64 114212]

    [13]

    Tatarskii V I (translated by Silverman R A) 1961 Wave Propagation in a Turbulent Medium (New York: McGraw-Hill Book company) pp7, 8

    [14]

    Mei H P 2007 Ph. D. Dissertation (Hefei: Hefei Institutes of Physical Science, Chinese Academy of Sciences) (in Chinese) [梅海平 2007 博士学位论文(合肥: 中国科学院合肥物质科学研究院)]

    [15]

    Xiao S M 2014 Ph. D. Dissertation (Hefei: Hefei Institutes of Physical Science, Chinese Academy of Sciences) (in Chinese) [肖树妹 2014 博士学位论文(合肥: 中国科学院合肥物质科学研究院)]

    [16]

    Rao R Z 2012 Modern Atmospheric Optics (Beijing: Science Press) pp155-159 (in Chinese) [饶瑞中 2012 现代大气光学(北京: 科学出版社)第155159页]

    [17]

    Tian Y J, Yang Q S, Yang N, Li B, Chen B, Yang J B 2013 J. Vib. Eng. 26 90 (in Chinese) [田玉基, 杨庆山, 杨娜, 李波, 陈波, 杨靖波 2013 振动工程学报 26 90]

    [18]

    Consortini A, Ronchi L 1972 Appl. Opt. 11 1205

  • [1] 刘宇韬, 徐苗, 付兴虎, 付广伟. 大气湍流对空间相干光通信的相干探测性能影响.  , 2024, 73(10): 104206. doi: 10.7498/aps.73.20231885
    [2] 曾嘉乐, 练昌旺, 季雨, 闫锐. 间接驱动相关条件下的大空间尺度对流受激拉曼侧向散射.  , 2024, 73(10): 105202. doi: 10.7498/aps.73.20240045
    [3] 王明军, 席建霞, 王婉柔, 李勇俊, 张佳琳. 声波扰动对大气湍流内外尺度与折射率功率谱函数的影响分析.  , 2023, 72(12): 124303. doi: 10.7498/aps.72.20230003
    [4] 吴晓庆, 杨期科, 黄宏华, 青春, 胡晓丹, 王英俭. 大气光学湍流模式研究: ${\boldsymbol{C}}_{\boldsymbol{n}}^{\boldsymbol 2}$廓线模式.  , 2023, 72(6): 069201. doi: 10.7498/aps.72.20221985
    [5] 吴晓庆, 杨期科, 黄宏华, 青春, 胡晓丹, 王英俭. 大气光学湍流模式研究—方法和进展.  , 2023, 72(4): 049201. doi: 10.7498/aps.72.20221986
    [6] 杨瑞科, 李福军, 武福平, 卢芳, 魏兵, 周晔. 沙尘湍流大气对自由空间量子通信性能影响研究.  , 2022, 71(22): 220302. doi: 10.7498/aps.71.20221125
    [7] 李艳玲, 梅海平, 任益充, 张骏昕, 陶志炜, 艾则孜姑丽·阿不都克热木, 刘世韦. 湍流大气中随机粗糙表面激光回波空间相干性仿真.  , 2022, 71(14): 140201. doi: 10.7498/aps.71.20212420
    [8] 蔡俊, 李学彬, 詹国伟, 武鹏飞, 徐春燕, 青春, 吴晓庆. 一个新的海边光学湍流外尺度和Cn2的廓线模式.  , 2018, 67(1): 014206. doi: 10.7498/aps.67.20171324
    [9] 吴晓庆, 田启国, 金鑫淼, 姜鹏, 青春, 蔡俊, 周宏岩. 常规气象参数估算南极泰山站近地面大气光学湍流强度.  , 2017, 66(3): 039201. doi: 10.7498/aps.66.039201
    [10] 张鹏飞, 乔春红, 冯晓星, 黄童, 李南, 范承玉, 王英俭. Non-Kolmogorov湍流大气中小尺度热晕效应线性理论.  , 2017, 66(24): 244210. doi: 10.7498/aps.66.244210
    [11] 王倩, 梅海平, 李玉剑, 邵士勇, 李学彬, 饶瑞中. 远海海面大气光学湍流实验测量.  , 2016, 65(7): 074206. doi: 10.7498/aps.65.074206
    [12] 王倩, 梅海平, 钱仙妹, 饶瑞中. 近地面大气光学湍流空间相关特性的实验研究.  , 2015, 64(11): 114212. doi: 10.7498/aps.64.114212
    [13] 黄永平, 赵光普, 肖希, 王藩侯. 部分空间相干光束在非Kolmogorov湍流大气中的有效曲率半径.  , 2012, 61(14): 144202. doi: 10.7498/aps.61.144202
    [14] 刘扬阳, 吕群波, 张文喜. 大气湍流畸变对空间目标清晰干涉成像仿真研究.  , 2012, 61(12): 124201. doi: 10.7498/aps.61.124201
    [15] 王 华, 王向朝, 曾爱军, 杨 坤. 大气湍流对斜程传输准单色高斯-谢尔光束空间相干性的影响.  , 2008, 57(1): 634-638. doi: 10.7498/aps.57.634
    [16] 陈晓文, 汤明玥, 季小玲. 大气湍流对部分相干厄米-高斯光束空间相干性的影响.  , 2008, 57(4): 2607-2613. doi: 10.7498/aps.57.2607
    [17] 左浩毅, 杨经国. 基于气溶胶光学厚度反演大气气溶胶尺度分布.  , 2007, 56(10): 6132-6136. doi: 10.7498/aps.56.6132
    [18] 季小玲, 肖 希, 吕百达. 大气湍流对多色部分空间相干光传输特性的影响.  , 2004, 53(11): 3996-4001. doi: 10.7498/aps.53.3996
    [19] 董丽芳, 李雪辰, 尹增谦, 王龙. 大气压介质阻挡放电中的自组织斑图结构.  , 2002, 51(10): 2296-2301. doi: 10.7498/aps.51.2296
    [20] 王晓春, 周定文, 张以谟. 非线性光学位相共轭实时补偿大气湍流扰动.  , 1989, 38(3): 466-470. doi: 10.7498/aps.38.466
计量
  • 文章访问数:  6107
  • PDF下载量:  240
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-13
  • 修回日期:  2015-06-18
  • 刊出日期:  2015-11-05

/

返回文章
返回
Baidu
map