-
以SrO和CrO2为原料, 在高温高压的条件下直接反应生成纯相的K2NiF4结构的Sr2CrO4多晶样品. 结构用粉末X射线衍射及GSAS精修表征. 磁化率测试显示样品存在一个弱的反铁磁相变, 奈尔温度为TN=95 K. 在奈尔温度以上, 磁化率随温度的变化遵循居里-外斯定律. 对样品进行了电阻测试, 结果显示了样品的绝缘特性.
-
关键词:
- K2NiF4结构 /
- 高压 /
- Mott-Hubbard绝缘体
Sr2CrO4 with a K2NiF4 structure can be synthesized by different methods under ambient pressure and high pressure, while the properties reported are quite different. In this paper, pure phase Sr2CrO4 with K2NiF4 structure is obtained by one-step solid state reaction under high pressure and high temperature. Powders of SrO and CrO2 are used as the starting materials. The Sr2CrO4 structure at room temperature is determined by powder XRD measurement and GSAS Rietveld refinement. Sr2CrO4 crystal is of tetragonal symmetry with space group I4/mmm and its lattice parameters a = 3.8191 Å and c=12.5046 Å. There are two oxygen sites, apical O1 and equatorial O2. The CrO6 octahedron is slightly elongated along the c-axis, forming a longer bond Cr–O1=1.9180 Å and a shorter bond Cr–O2=1.9096 Å. Temperature dependence of the magnetic susceptibility is measured in the temperature range of 2-300 K under the magnetic field 1 T. A weak antiferromagnetic transition can be seen at TN=95 K. Above TN, the susceptibility obeys Curie-Weiss law. The Curie-Weiss fitting gives the Weiss constant θ =-364 K and the effective magnetic moment μeff=2.9 μB, in good agreement with the theoretical value of localized Cr4+, indicating the localized electronic state. Field dependence of susceptibility has been measured at different temperatures. The magnetic properties here are different from those in the previous reports, and this discrepancy is attributed to the quite different sample synthesis methods. Temperature dependence of electrical resistivity of Sr2CrO4 shows insulating behavior. Activation energy Δ is estimated by the relation ρ ∝ exp(Δ/kBT) at temperature range 150-300 K. In the temperature range 150-200 K and 200-300 K the activation energies are ΔL=0.134 eV and ΔH=0.168 eV, respectively. The insulating behavior is consistent with the previous experiment reports and the theoretical calculation, which is possibly attributed to the suppression of orbital degree of freedom, resulting from the elongation of CrO6 octahedron and the narrow band width induced by the two-dimensional crystal structure.-
Keywords:
- K2NiF4 structure /
- high pressure /
- Mott-Hubbard insulator
[1] Maeno Y, Hashimoto H, Yoshida K, Nishizaki S, Fujita T, Bednorz J G, Lichtenberg F 1994 Nature 372 532
[2] Chu C W, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q 1987 Phys. Rev. Lett. 58 405
[3] Liu Q Q, Yang H, Qin X M, Yu Y, Yang L X, Li F Y, Yu R C, Jin C Q, Uchida S 2006 Phys. Rev. B 74 100506
[4] Arita R, Yamasaki A, Held K, Matsuno J, Kuroki K 2007 Phys. Rev. B 75 174521
[5] Zhou H D, Conner B S, Balicas L, Wiebe C R 2007 Phys. Rev. Lett. 99 136403
[6] Dun Z L, Garlea V O, Yu C, Ren Y, Choi E S, Zhang H M, Dong S, Zhou H D 2014 Phys. Rev. B 89 235131
[7] Ortega-San-Martin L, Williams A J, Rodgers J, Attfield J P, Heymann G, Huppertz H 2007 Phys. Rev. Lett. 99 255701
[8] Komarek A C, Moller T, Isobe M, Drees Y, Ulbrich H, Azuma M, Fernandez-Diaz M T, Senyshyn A, Hoelzel M, Andre G, Ueda Y, Gruninger M, Braden M 2011 Phys. Rev. B 84 125114
[9] Zhou J S, Jin C Q, Long Y W, Yang L X, Goodenough J B 2006 Phys. Rev. Lett. 96 046408
[10] Long Y W, Yang L X, Lv Y X, Liu Q Q, Jin C Q, Zhou J S, Goodenough J B 2011 J. Phys.: Condens. Matter 23 355601
[11] Yang L X, Long Y W, Jin C Q, Yu R C, Zhou J S, Goodenough J B, Liu H Z, Shen G Y, Mao H K 2008 Joint 21st Airapt and 45th Ehprg International Conference on High Pressure Science and Technology 121 022017
[12] Rani M, Sakurai H, Okubo S, Takamoto K, Nakata R, Sakurai T, Ohta H, Matsuo A, Kohama Y, Kindo K, Ahmad J 2013 J. Phys.: Condens. Matter 25 226001
[13] Castillo-Martinez E, Alario-Franco M A 2007 Solid State Sciences 9 564
[14] Matsuno J, Okimoto Y, Kawasaki M, Tokura Y 2005 Phys. Rev. Lett. 95 176404
[15] Baikie T, Ahmad Z, Srinivasan M, Maignan A, Pramana S S, White T J 2007 J. Solid State Chem. 180 1538
[16] Sakurai H 2014 J. Phys. Soc. Jpn. 83 123701
[17] Weng H M, Kawazoe Y, Wan X G, Dong J M 2006 Phys. Rev. B 74 205112
[18] Sugiyama J, Nozaki H, Umegaki I, Higemoto W, Ansaldo E J, Brewer J H, Sakurai H, Kao T H, Yang H D, Mansson M 2014 Phys. Rev. B 89 020402
[19] Imai Y, Solovyev I, Imada M 2005 Phys. Rev. Lett. 95 176405
[20] Castillo-Martinez E, Duran A, Alario-Franco M A 2008 J. Solid State Chem. 181 895
[21] Komarek A C, Streltsov S V, Isobe M, Moller T, Hoelzel M, Senyshyn A, Trots D, Fernandez-Diaz M T, Hansen T, Gotou H, Yagi T, Ueda Y, Anisimov V I, Gruninger M, Khomskii D I, Braden M 2008 Phys. Rev. Lett. 101 167204
[22] Streltsov S V, Korotin M A, Anisimov V I, Khomskii D I 2008 Phys. Rev. B 78 054425
[23] Bhobe P A, Chainani A, Taguchi M, Eguchi R, Matsunami M, Ohtsuki T, Ishizaka K, Okawa M, Oura M, Senba Y, Ohashi H, Isobe M, Ueda Y, Shin S 2011 Phys. Rev. B 83 165132
-
[1] Maeno Y, Hashimoto H, Yoshida K, Nishizaki S, Fujita T, Bednorz J G, Lichtenberg F 1994 Nature 372 532
[2] Chu C W, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q 1987 Phys. Rev. Lett. 58 405
[3] Liu Q Q, Yang H, Qin X M, Yu Y, Yang L X, Li F Y, Yu R C, Jin C Q, Uchida S 2006 Phys. Rev. B 74 100506
[4] Arita R, Yamasaki A, Held K, Matsuno J, Kuroki K 2007 Phys. Rev. B 75 174521
[5] Zhou H D, Conner B S, Balicas L, Wiebe C R 2007 Phys. Rev. Lett. 99 136403
[6] Dun Z L, Garlea V O, Yu C, Ren Y, Choi E S, Zhang H M, Dong S, Zhou H D 2014 Phys. Rev. B 89 235131
[7] Ortega-San-Martin L, Williams A J, Rodgers J, Attfield J P, Heymann G, Huppertz H 2007 Phys. Rev. Lett. 99 255701
[8] Komarek A C, Moller T, Isobe M, Drees Y, Ulbrich H, Azuma M, Fernandez-Diaz M T, Senyshyn A, Hoelzel M, Andre G, Ueda Y, Gruninger M, Braden M 2011 Phys. Rev. B 84 125114
[9] Zhou J S, Jin C Q, Long Y W, Yang L X, Goodenough J B 2006 Phys. Rev. Lett. 96 046408
[10] Long Y W, Yang L X, Lv Y X, Liu Q Q, Jin C Q, Zhou J S, Goodenough J B 2011 J. Phys.: Condens. Matter 23 355601
[11] Yang L X, Long Y W, Jin C Q, Yu R C, Zhou J S, Goodenough J B, Liu H Z, Shen G Y, Mao H K 2008 Joint 21st Airapt and 45th Ehprg International Conference on High Pressure Science and Technology 121 022017
[12] Rani M, Sakurai H, Okubo S, Takamoto K, Nakata R, Sakurai T, Ohta H, Matsuo A, Kohama Y, Kindo K, Ahmad J 2013 J. Phys.: Condens. Matter 25 226001
[13] Castillo-Martinez E, Alario-Franco M A 2007 Solid State Sciences 9 564
[14] Matsuno J, Okimoto Y, Kawasaki M, Tokura Y 2005 Phys. Rev. Lett. 95 176404
[15] Baikie T, Ahmad Z, Srinivasan M, Maignan A, Pramana S S, White T J 2007 J. Solid State Chem. 180 1538
[16] Sakurai H 2014 J. Phys. Soc. Jpn. 83 123701
[17] Weng H M, Kawazoe Y, Wan X G, Dong J M 2006 Phys. Rev. B 74 205112
[18] Sugiyama J, Nozaki H, Umegaki I, Higemoto W, Ansaldo E J, Brewer J H, Sakurai H, Kao T H, Yang H D, Mansson M 2014 Phys. Rev. B 89 020402
[19] Imai Y, Solovyev I, Imada M 2005 Phys. Rev. Lett. 95 176405
[20] Castillo-Martinez E, Duran A, Alario-Franco M A 2008 J. Solid State Chem. 181 895
[21] Komarek A C, Streltsov S V, Isobe M, Moller T, Hoelzel M, Senyshyn A, Trots D, Fernandez-Diaz M T, Hansen T, Gotou H, Yagi T, Ueda Y, Anisimov V I, Gruninger M, Khomskii D I, Braden M 2008 Phys. Rev. Lett. 101 167204
[22] Streltsov S V, Korotin M A, Anisimov V I, Khomskii D I 2008 Phys. Rev. B 78 054425
[23] Bhobe P A, Chainani A, Taguchi M, Eguchi R, Matsunami M, Ohtsuki T, Ishizaka K, Okawa M, Oura M, Senba Y, Ohashi H, Isobe M, Ueda Y, Shin S 2011 Phys. Rev. B 83 165132
计量
- 文章访问数: 5927
- PDF下载量: 402
- 被引次数: 0