-
通过密度泛函理论计算研究了1, 2-环己二酮(α-CHD)基态光解离反应的势能面. 通过IRC方法确定了5个主要的反应通道, 相应的产物分别为P1(c-C5H8O+CO), P2(2C2H4+2CO), P3(CH2CHCH2CH2CHO+CO), P4(2CH2CO+C2H4)和P5(CH3CHCO+CH2CHCHO). 获得了反应过程中反应物、产物、中间体和过渡态的结构参数. 详细阐述了这些通道的反应过程, 分析了其反应机理, 总结出最优的反应路径为α-CHD→c-C5H8O+CO. 理论分析与实验结果相符. 获得的结果为进一步进行与1, 2-环己二酮相关的研究提供有价值的信息.The α-cyclohexanedione (α-CHD) molecule is an important structural unit in the six-membered ring systems with a large number ofbiologically meaningfulmoleculeswhich have been found. It has important applications in synthetic science also. It is found that some fragments can be obtained through vacuum ultraviolet absorption spectrum and induction photolysis experiments for α-CHD molecules. In order to understand the dissociation reaction mechanism of α-CHD and reveal the resource of those fragments, the potential energy surface of the dissociation reaction for α-CHD molecules in ground state is studied by B3LYP and CCSD(T) methods. The reaction paths of the products are obtained, such as P1(c-C5H8O+ CO), P2(2 C2H4+ 2 CO), P3 (CH2CHCH2CH2CHO+ CO), P4(2 C2H2O+ C2H4), P5(CH3CHCO+ CH2CHCHO). And the structure parameters of the reactant, products, intermediates and transition states in the reaction processes are also obtained. Their reaction mechanisms can be summarized as the isomerization and dissociation processes, and these processes mainly involve the hydrogen atom transfer, ring-opening and C–C bond cleavages. A reactionchannel in which α-CHD dissociates into cyclopentanone and CO needs lower energy, so it is more advantage our to make dissociation study than other studies. In addition, we think that α-dissociationreaction cannotoccur directly in ground state from our calculations. Based on the UV photolysis experiment of α-CHD with a wavelength of 253.7 nm (112.7 kcal/mol) and the theoretical calculation of potential energy surface in ground state, we obtain that Path 1 (α-CHD→ c-C5H8O+ CO) is the most possible channel, Path 3 (α-CHD→ CH2CHCH2CH2CHO+ CO) is the next, and Path 5(α-CHD→ CH3CHCO+ CH2CHCHO) is the third, while Path 2 (α-CHD→ 2 C2H4+ 2 CO) and Path 4 (α-CHD→ 2 CH2CO+ C2H4) are difficult to be achieved. So c-C5H8O and CO are the major fragment products, CH2CHCH2CH2CHO is the subsidiary one, maybe a minor distribution of CH3CHCO and CH2CHCHO, but the fragments C2H4 and CH2CO are difficult to obtain. This agrees well with the analysis using mass spectrometry in experiment. Results can clarify the microcosmic reaction mechanism of the photodissociation reaction for α-CHD molecule in ground state. It may provide an important reference for realizing its spectrum in-depth. The obtained results are informative for future studies on α-CHD relative.
-
Keywords:
- α-cyclohexanedione /
- photodissociation /
- density functional theory /
- potential energy surface
[1] Kusaba M, Tsunawaki Y 2007 Radiat. Phys. Chem. 76 1447
[2] Moortgat G K, Meyrahn H, Warneck P 2010 Chem. Phys. Chem. 11 3896
[3] Song Y D, Chen Z, Yang X, Sun C K, Zhang C C, Hu Z 2013 Chin. Phys. B 22 103301
[4] Ananda S, Schlegel H B 2004 Phys. Chem. Chem. Phys. 6 5166
[5] Wang Q, Wu D, Jin M, Liu F, Hu F, Cheng X, Liu H, Hu Z, Ding D, Mineo H, Dyakov Y A, Mebel A M, Chao S D, Lin S H 2008 J. Chem. Phys. 129 204302
[6] Yao G X, Wang X L, Du C M, Li H M, Zhang X Y, Zheng X F, Ji X H, Cui Z F 2006 Acta Phys. Sin. 55 2210 (in Chinese) [姚关心, 汪小丽, 杜传梅, 李慧敏, 张先燚, 郑贤锋, 季学韩, 崔执凤 2006 55 2210]
[7] Cui G L, Li Q S, Zhang F, Fang W H, Yu J G 2006 J. Phys. Chem. A 110 11839
[8] Ding W J, Fang W H, Liu R Z, Fang D C 2002 J. Chem. Phys. 117 8745
[9] Xiao H Y, Liu Y J, Fang W H 2007 J. Chem. Phys. 127 244313
[10] He H Y, Fang W H 2003 J. Am. Chem. Soc. 125 16139
[11] Chen W K, Cheng P Y 2005 J. Phys. Chem. A 109 6818
[12] Rajakumar B, Gierczak T, Flad J E, Ravishankara A R, Burkholder J B 2008 J Photochem. Photobio. A 199 336
[13] Fukamiya N, Lee K, Muhammad I, Murakami C, Okano M, Harvey I, Pelletier J 2005 J. Cancer Lett. 220 37
[14] Gianturco M A, Giammarino A S, Pitcher R G 1963 Tetrahedron 19 2051
[15] Francis J T, Hitchcock A P 1994 J. Phys. Chem. 98 3650
[16] Duval C, Lecomte J 1962 Acad. Sci. 36 254
[17] Samanta A K, Pandey P, Bandyopadhyay B, Chakraborty T 2010 J. Mol. Struct. 963 234
[18] Schwarzenbach G, Wittwer C H 1947 Chim. Acta. 30 663
[19] Bouchoux G, Hoppilliard Y, Houriet R 1987 New J. Chem. 11 225
[20] Shen Q, Traetteberg M, Samdal S 2009 J. Mol. Struct. 923 94
[21] Mukhopadhyay A, Mukherjee M, Ghosh A K, Chakraborty T 2011 J. Phys. Chem. A 115 7494
[22] Wu L J, Sui Q T, Zhang D, Zhang L, Qi Y 2015 Acta Phys. Sin. 64 042102 (in Chinese) [吴丽君, 随强涛, 张多, 张林, 祁阳 2015 64 042102]
[23] Ziegler T 1991 Chem. Rev. 91 651
[24] Xie J, Feng D C, Feng S Y, Ding Y Q 2007 Struct Chem. 18 65
[25] Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Jr. Montgomery J A, Vreven T, Kuden K N, Burant J C, Millam J M, Iyengar S S, Thomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, MoroKuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich J A S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui C, Baboul A G, Clifford B S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaroni I, Martin R L, Fox D J, Keith T, AlLaham M A, Peng C Y, Nanayakkara A, Challacomb M, Gill P M W, Johnson B, Chen W, Wong W W, Gonzales C, Pople J A 2004 Gaussian 03, Revision D.01, Pittsburgh, PA Gaussian Inc
[26] Saito S 1976 Chem. Phys. Lett. 42 399
[27] Wu C C, Lien M H 1996 J. Phys. Chem. 100 594
[28] Majumder C, Jayakumar O D, Vatsa R K 1999 Chem. Phys. Lett. 304 51
[29] Chong D P, Hu C H 1998 J. Electron. Spectros. 94 181
[30] Le H T, Flammang R, Gerbaux P, Bouchoux G, Nguyen M T 2001 J. Phys. Chem. A 105 11582
-
[1] Kusaba M, Tsunawaki Y 2007 Radiat. Phys. Chem. 76 1447
[2] Moortgat G K, Meyrahn H, Warneck P 2010 Chem. Phys. Chem. 11 3896
[3] Song Y D, Chen Z, Yang X, Sun C K, Zhang C C, Hu Z 2013 Chin. Phys. B 22 103301
[4] Ananda S, Schlegel H B 2004 Phys. Chem. Chem. Phys. 6 5166
[5] Wang Q, Wu D, Jin M, Liu F, Hu F, Cheng X, Liu H, Hu Z, Ding D, Mineo H, Dyakov Y A, Mebel A M, Chao S D, Lin S H 2008 J. Chem. Phys. 129 204302
[6] Yao G X, Wang X L, Du C M, Li H M, Zhang X Y, Zheng X F, Ji X H, Cui Z F 2006 Acta Phys. Sin. 55 2210 (in Chinese) [姚关心, 汪小丽, 杜传梅, 李慧敏, 张先燚, 郑贤锋, 季学韩, 崔执凤 2006 55 2210]
[7] Cui G L, Li Q S, Zhang F, Fang W H, Yu J G 2006 J. Phys. Chem. A 110 11839
[8] Ding W J, Fang W H, Liu R Z, Fang D C 2002 J. Chem. Phys. 117 8745
[9] Xiao H Y, Liu Y J, Fang W H 2007 J. Chem. Phys. 127 244313
[10] He H Y, Fang W H 2003 J. Am. Chem. Soc. 125 16139
[11] Chen W K, Cheng P Y 2005 J. Phys. Chem. A 109 6818
[12] Rajakumar B, Gierczak T, Flad J E, Ravishankara A R, Burkholder J B 2008 J Photochem. Photobio. A 199 336
[13] Fukamiya N, Lee K, Muhammad I, Murakami C, Okano M, Harvey I, Pelletier J 2005 J. Cancer Lett. 220 37
[14] Gianturco M A, Giammarino A S, Pitcher R G 1963 Tetrahedron 19 2051
[15] Francis J T, Hitchcock A P 1994 J. Phys. Chem. 98 3650
[16] Duval C, Lecomte J 1962 Acad. Sci. 36 254
[17] Samanta A K, Pandey P, Bandyopadhyay B, Chakraborty T 2010 J. Mol. Struct. 963 234
[18] Schwarzenbach G, Wittwer C H 1947 Chim. Acta. 30 663
[19] Bouchoux G, Hoppilliard Y, Houriet R 1987 New J. Chem. 11 225
[20] Shen Q, Traetteberg M, Samdal S 2009 J. Mol. Struct. 923 94
[21] Mukhopadhyay A, Mukherjee M, Ghosh A K, Chakraborty T 2011 J. Phys. Chem. A 115 7494
[22] Wu L J, Sui Q T, Zhang D, Zhang L, Qi Y 2015 Acta Phys. Sin. 64 042102 (in Chinese) [吴丽君, 随强涛, 张多, 张林, 祁阳 2015 64 042102]
[23] Ziegler T 1991 Chem. Rev. 91 651
[24] Xie J, Feng D C, Feng S Y, Ding Y Q 2007 Struct Chem. 18 65
[25] Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Jr. Montgomery J A, Vreven T, Kuden K N, Burant J C, Millam J M, Iyengar S S, Thomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, MoroKuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich J A S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui C, Baboul A G, Clifford B S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaroni I, Martin R L, Fox D J, Keith T, AlLaham M A, Peng C Y, Nanayakkara A, Challacomb M, Gill P M W, Johnson B, Chen W, Wong W W, Gonzales C, Pople J A 2004 Gaussian 03, Revision D.01, Pittsburgh, PA Gaussian Inc
[26] Saito S 1976 Chem. Phys. Lett. 42 399
[27] Wu C C, Lien M H 1996 J. Phys. Chem. 100 594
[28] Majumder C, Jayakumar O D, Vatsa R K 1999 Chem. Phys. Lett. 304 51
[29] Chong D P, Hu C H 1998 J. Electron. Spectros. 94 181
[30] Le H T, Flammang R, Gerbaux P, Bouchoux G, Nguyen M T 2001 J. Phys. Chem. A 105 11582
计量
- 文章访问数: 5903
- PDF下载量: 214
- 被引次数: 0