搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

层结流体中在热外源和效应地形效应作用下的非线性Rossby孤立波和非齐次Schrdinger方程

李少峰 杨联贵 宋健

引用本文:
Citation:

层结流体中在热外源和效应地形效应作用下的非线性Rossby孤立波和非齐次Schrdinger方程

李少峰, 杨联贵, 宋健

Nonlinear solitary Rossby waves with external heating source and effect topographic effect in stratified flows described by the inhomogeneous Schrdinger equation

Li Shao-Feng, Yang Lian-Gui, Song Jian
PDF
导出引用
  • 在层结流体中, 从带有地形、热外源耗散的下边界条件以及带有热外源的准地转位涡方程开始, 使用小参数展开方法和多尺度时空伸长变换推导出了具有热外源、效应和地形效应的强迫Rossby孤立波方程, 得到孤立Rossby振幅满足的带有地形与热外源的非齐次非线性的Schrdinger方程. 通过分析Rossby孤立波振幅的变化, 指出了热外源、效应和地形效应都是诱导Rossby孤立波产生的重要因素, 给出了切变基本流下地形、热外源和层结流体中Rossby的相互作用.
    Rossby waves are intrinsic in the large-scale systems of fluids, so they are the most important waves in the atmosphere and ocean. Theory and observation show that their basic characteristic is to satisfy the quasi-geostrophic and quasi-static equilibrium approximations. In stratified fluids, we discuss the long waves in a homogenous atmosphere and obtain the KdV equation, but the analysis is limited to the case that the velocity shear is small compared with a basic uniform zonal motion, and it gives no insight pertaining to the kinds of stream-line-flow patterns accompanying these waves. Here, the -plane approximation f= f0+ 0 y (0 is a constant) is extended into f= f0+ (y) y, which includes a nonlinear function (y) taking the place of in the -plane approximation. Such an approximation can depict more precisely the motion of the atmosphere and ocean, especially in the middle and high latitude regions. It generalizes the theory developed by Helfrich and Pedlosky for time-dependent coherent structures in a marginally stable zonal flow by including forcing. Such forcing could be due to topography or external source. We take the basic flow to be a shear and the Visl-Brunt frequency N a function of variable z. For the stratified fluids, based on the lower boundary with external heating source and topography, as well as the quasi-geostrophic potential vorticity equation with external heating source, an inhomogeneous nonlinear Schrdinger equation (including topographic forcing and an external heating source) is derived by using the perturbation method and stretching transforms of time and space. It is found that the external heating source, effect and topography effect are the important factors that could induce the nonlinear solitary Rossby by inspection of the evolution of the amplitude of Rossby waves. On the assumption that nonlinear topographic effects and the dissipation of external heating source are balanced, an inhomogenous equation in which the coefficients depend on (y), u(y,z) and N(z) is derived. Results show that the topography, external heating source and Rossby waves will interact with a basic stream function that has a shear. In stratified fluids, the inhomogeneous nonlinear Schrdinger equation is obtained for describing the evolution of the amplitude of solitary Rossby envelop solitary waves as the change of Rossby parameter (y) with latitude y, topographic forcing and the external heating source.
      通信作者: 杨联贵, lgyang@imu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11362012)和内蒙古工业大学科学研究项目(批准号: ZD201411)资助的课题.
      Corresponding author: Yang Lian-Gui, lgyang@imu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11362012), and the Sciences of Inner Mongolia University of Technology (Grant No. ZD201411).
    [1]

    Maxworthy T, Redekopp L G 1976 Nature 260 509

    [2]

    Maxworthy T, Redekopp L G, Weidman P D 1978 Icarus 33 388

    [3]

    Long R R 1964 J. Atmos. Sci. 21 197

    [4]

    Benney D J 1966 J. Math. Phys. 45 52

    [5]

    Ripa P 1982 J. Phys. Oceanogr. 12 97

    [6]

    Redekopp L G 1977 J. Fluid Mesh. 82 725

    [7]

    Redkopp L G, Weidman P D 1978 J. Atmos. Sci. 35 790

    [8]

    Wadati M 1973 J. Phy. Soc. Japan 34 1289

    [9]

    Tan B K, Wu R S 1995 Sci. Atmos. Sin. 19 299 (in Chinese) [谭本馗, 伍荣生 1995 大气科学 19 299]

    [10]

    Song J, Yang L G 2011 Acta Phys. Sin. 60 104701(in Chinese) [宋健, 杨联贵 2011 60 104701]

    [11]

    Song J, Yang L G 2012 Acta Phys. Sin. 61 210510(in Chinese) [宋健, 杨联贵 2012 61 210510]

    [12]

    Maslowe S A, Redekopp L G 1980 J. Fluid Mech. 101 321

    [13]

    Ono H 1975 J. Phys. Soc. Japan 39 1082

    [14]

    Ono H 1982 J. Phys. Soc. Japan 50 2757

    [15]

    Body J P 1980 J. Phys. Oceanogr. 10 1699

    [16]

    Body J P 1983 J. Phys. Oceanogr. 13 428

    [17]

    Yu X, Zhao Q 2009 Chin. Phys. Lett. 26 039201

    [18]

    Wang P, Dai X G 2005 Acta. Phys. Sin. 54 4961(in Chinese) [汪萍, 戴新刚 2005 54 4961]

    [19]

    Pedlosky J 1979 Geophysical Fluid Dynamics (Berlin and New York:: Springer Velag) pp604608

    [20]

    Meng Lu, Lu K L 2000 Chin. J. Compu. Phys. 19 349

    [21]

    Tan B K, Wu R S 1993 Sci. in China B 23 437(in Chinese) [谭本馗, 伍荣生 1993 中国科学B辑 23 437]

    [22]

    Domaracki A, Loesch A Z 1977 J. Atmos Sci. 34 486

    [23]

    Jeffrey A, Kawahara T 1982 Asymptotic Methods in Nonlinear Waves Theory (Melbourne: Pitman Publishing Inc.) pp256-266

  • [1]

    Maxworthy T, Redekopp L G 1976 Nature 260 509

    [2]

    Maxworthy T, Redekopp L G, Weidman P D 1978 Icarus 33 388

    [3]

    Long R R 1964 J. Atmos. Sci. 21 197

    [4]

    Benney D J 1966 J. Math. Phys. 45 52

    [5]

    Ripa P 1982 J. Phys. Oceanogr. 12 97

    [6]

    Redekopp L G 1977 J. Fluid Mesh. 82 725

    [7]

    Redkopp L G, Weidman P D 1978 J. Atmos. Sci. 35 790

    [8]

    Wadati M 1973 J. Phy. Soc. Japan 34 1289

    [9]

    Tan B K, Wu R S 1995 Sci. Atmos. Sin. 19 299 (in Chinese) [谭本馗, 伍荣生 1995 大气科学 19 299]

    [10]

    Song J, Yang L G 2011 Acta Phys. Sin. 60 104701(in Chinese) [宋健, 杨联贵 2011 60 104701]

    [11]

    Song J, Yang L G 2012 Acta Phys. Sin. 61 210510(in Chinese) [宋健, 杨联贵 2012 61 210510]

    [12]

    Maslowe S A, Redekopp L G 1980 J. Fluid Mech. 101 321

    [13]

    Ono H 1975 J. Phys. Soc. Japan 39 1082

    [14]

    Ono H 1982 J. Phys. Soc. Japan 50 2757

    [15]

    Body J P 1980 J. Phys. Oceanogr. 10 1699

    [16]

    Body J P 1983 J. Phys. Oceanogr. 13 428

    [17]

    Yu X, Zhao Q 2009 Chin. Phys. Lett. 26 039201

    [18]

    Wang P, Dai X G 2005 Acta. Phys. Sin. 54 4961(in Chinese) [汪萍, 戴新刚 2005 54 4961]

    [19]

    Pedlosky J 1979 Geophysical Fluid Dynamics (Berlin and New York:: Springer Velag) pp604608

    [20]

    Meng Lu, Lu K L 2000 Chin. J. Compu. Phys. 19 349

    [21]

    Tan B K, Wu R S 1993 Sci. in China B 23 437(in Chinese) [谭本馗, 伍荣生 1993 中国科学B辑 23 437]

    [22]

    Domaracki A, Loesch A Z 1977 J. Atmos Sci. 34 486

    [23]

    Jeffrey A, Kawahara T 1982 Asymptotic Methods in Nonlinear Waves Theory (Melbourne: Pitman Publishing Inc.) pp256-266

  • [1] 潘楠, 黄平, 黄龙刚, 雷鸣, 刘文军. 非均匀光纤中暗孤子传输特性研究.  , 2015, 64(9): 090504. doi: 10.7498/aps.64.090504
    [2] 孙庆华, 潘楠, 雷鸣, 刘文军. 色散渐变光纤中相移控制研究.  , 2014, 63(15): 150506. doi: 10.7498/aps.63.150506
    [3] 宋健, 刘全生, 杨联贵. 切变纬向流中β效应与缓变地形Rossby波.  , 2012, 61(21): 210510. doi: 10.7498/aps.61.210510
    [4] 宋君强, 曹小群, 朱小谦, 张卫民, 赵军. 三类大气基本波动的广义变分原理.  , 2012, 61(7): 070401. doi: 10.7498/aps.61.070401
    [5] 宋健, 姜楠, 杨联贵. 切变基本纬向流中β效应的赤道Rossby孤立波包.  , 2011, 60(2): 024701. doi: 10.7498/aps.60.024701
    [6] 钱存, 王亮亮, 张解放. 变系数非线性Schrödinger方程的孤子解及其相互作用.  , 2011, 60(6): 064214. doi: 10.7498/aps.60.064214
    [7] 宋健, 杨联贵, 刘全生. 强迫耗散与效应地形效应作用下的非线性Rossby波包.  , 2011, 60(10): 104701. doi: 10.7498/aps.60.104701
    [8] 张亮, 张立凤, 吴海燕, 李刚. 正压Rossby波扰动能量.  , 2010, 59(1): 44-53. doi: 10.7498/aps.59.44
    [9] 程雪苹, 林机, 韩平. 三维非线性Schr?dinger方程的直接微扰方法.  , 2010, 59(10): 6752-6756. doi: 10.7498/aps.59.6752
    [10] 张民仓, 皇甫国庆. 环状非有心势场中Schr?dinger方程的精确解.  , 2010, 59(10): 6819-6823. doi: 10.7498/aps.59.6819
    [11] 宋健, 赖俊峰. 正压流体中具有β效应与地形效应的强迫Rossby孤立波.  , 2010, 59(7): 4756-4760. doi: 10.7498/aps.59.4756
    [12] 宋健, 杨联贵. 层结流体中具有β效应与地形效应的强迫Rossby孤立波.  , 2010, 59(5): 3309-3314. doi: 10.7498/aps.59.3309
    [13] 达朝究, 丑纪范. 缓变地形下Rossby波振幅演变满足的带有强迫项的KdV方程.  , 2008, 57(4): 2595-2599. doi: 10.7498/aps.57.2595
    [14] 宗丰德, 戴朝卿, 杨 琴, 张解放. 光纤中变系数非线性Schr?dinger方程的孤子解及其应用.  , 2006, 55(8): 3805-3812. doi: 10.7498/aps.55.3805
    [15] 蔡长英, 任中洲, 鞠国兴. 指数型变化有效质量的三维Schr?dinger方程的解析解.  , 2005, 54(6): 2528-2533. doi: 10.7498/aps.54.2528
    [16] 刘成仕, 杜兴华. 耦合Klein-Gordon-Schr?dinger方程新的精确解.  , 2005, 54(3): 1039-1043. doi: 10.7498/aps.54.1039
    [17] 蒲利春, 林宗兵, 张雪峰, 王本菊, 姜 毅, 严天艳. 非线性Schr?dinger方程组的精确解组.  , 2005, 54(10): 4472-4477. doi: 10.7498/aps.54.4472
    [18] 李向正, 张金良, 王跃明, 王明亮. 非线性Schr?dinger方程的包络形式解.  , 2004, 53(12): 4045-4051. doi: 10.7498/aps.53.4045
    [19] 段一士, 俞重远, 吴振森. 双折射光纤中非线性耦合Schr?dinger方程的小振幅孤波解.  , 1997, 46(12): 2359-2362. doi: 10.7498/aps.46.2359
    [20] 周光辉. 无反射势阱的Schr?dinger方程的精确解.  , 1993, 42(2): 173-179. doi: 10.7498/aps.42.173
计量
  • 文章访问数:  5573
  • PDF下载量:  184
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-22
  • 修回日期:  2015-05-26
  • 刊出日期:  2015-10-05

/

返回文章
返回
Baidu
map