搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高阻ZnO薄膜的光电导型紫外探测器

祁晓萌 彭文博 赵小龙 贺永宁

引用本文:
Citation:

基于高阻ZnO薄膜的光电导型紫外探测器

祁晓萌, 彭文博, 赵小龙, 贺永宁

Photoconductive UV detector based on high-resistance ZnO thin film

Qi Xiao-Meng, Peng Wen-Bo, Zhao Xiao-Long, He Yong-Ning
PDF
导出引用
  • 本文通过射频磁控溅射法在玻璃衬底上沉积一层ZnO薄膜, 制备了Al-ZnO-Al 结构光电导型紫外探测器件, 并在室温下测试了所制备器件的暗场特性及其对紫外线的响应特性. 暗场条件下器件电流特性测试结果表明所制备的ZnO薄膜电阻率达到了3.71×109 Ω · cm, 是一种高阻薄膜. 在波长365 nm, 光强303 μW/cm2的紫外线照射下, 薄膜的电阻率为7.20×106 Ω · cm, 探测器明暗电流比达到了516. 40 V偏置电压条件下周期性开关紫外线照时, 探测器的上升和下降时间分别为199 ms和217 ms, 响应速度快且重复性好, 并利用ZnO半导体表面复合慢过程和体复合快过程对瞬态响应过程进行了理论拟合分析. 本文研究结果表明, 高阻ZnO薄膜紫外探测器具有良好的紫外光电响应特性.
    As a wide bandgap semiconductor material, ZnO has huge potential in applications such as light emitting devices and sensors. Compared with GaN and SiC, ZnO has a bandgap of 3.37 eV and exciton binding energy of 60 meV at room temperature, indicating it is a promising candidate of UV detector. ZnO based metal-semiconductor-metal photoconductive ultraviolet detector has the advantages of high optical gain and strong responsivity. However, due to the photoconductive relaxation and surface effect of the ZnO material, a ZnO-based photoconductive UV detector has a slow response which is defective for practical application. The intrinsic defects typically generated during the synthesis of ZnO, e.g. oxygen vacancy, should be responsible for the slow response. Therefore, we have fabricated the high-resistive ZnO thin film based UV detector and studied its UV response characteristic. High resistance ZnO thin film is fabricated on glass by RF magnetron sputtering and followed by lift-off photolithography to form Al interdigital electrodes. SEM and XRD images show that the as-fabricated ZnO thin film grows with preferential orientation along c-axis. A linear I-V curve under UV illumination indicates the ohmic contact between Al and ZnO. From these results, we can calculate the resistivities to be 3.71×109 Ω · cm and 7.20×106 Ω · cm respectively when in the dark and under 365 nm UV light of 303 μW/cm2. The light-to-dark current ratio is up to 516 with bias of 40 V. Besides, the ZnO thin film detector shows a stable, rapid, repeatible and reproducible response with a rise time of 199 ms and a fall time of 217 ms when exposed to periodically switched UV light illumination at a bias voltage of 40 V. Moreover, the detector has a high selectivity for 365 nm UV light and the responsivity is 0.15 mA/W with the intensity of 303 μW/cm2. Furthermore, the transient response process is analyzed using the theory of surface recombination and bulk recombination of ZnO semiconductor. For a high resistance ZnO thin film based UV detector, the surface recombination process is weakened ascribed to the decrease of intrinsic defects and the bulk recombination process plays a leading role, resulting in the fast response. Results show that high resistivity ZnO thin film based UV detectors have outstanding UV photoresponse characteristics for potential applications in UV/radiation detection.
      通信作者: 贺永宁, yongning@mail.xjtu.edu.cn
    • 基金项目: 中央高校基本科研业务费专项资金(批准号: xkjc2014011)和国家自然科学基金(批准号: 60876038)资助的课题.
      Corresponding author: He Yong-Ning, yongning@mail.xjtu.edu.cn
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities of China (Grant No. xkjc2014011), and the National Natural Science Foundation of China (Grant No. 60876038).
    [1]

    Wang X D, Summers C J, Wang Z L 2004 Nano Lett. 4 423

    [2]

    Sun H, Zhang Q F, Wu J L 2007 Acta Phys. Sin. 56 3479(in Chinese) [孙晖, 张琦峰, 吴锦雷 2007 56 3479]

    [3]

    Huang M, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P 2001 Sci. 292 1897

    [4]

    Liu R B, Zou B S 2011 Chin. Phys. B 20 047104

    [5]

    Yu C, Hao, Q, Saha S, Shi L, Yang X, Wang Z L 2005 Appl. Phys. Lett. 86 063101

    [6]

    Das S N, Moon K J, Kar J P, Choi J H, Xiong J J 2010 Appl. Phys. Lett. 97 022103

    [7]

    Wei M, Deng H, Wang P L, Li Y 2007 Mater Rev. 21 1 (in Chinese) [韦敏, 邓宏, 王培利, 李阳 2007 材料导报 21 1]

    [8]

    Liu Y Y, Yuan Y Z, Li J, Gao X T 2007 Mater Rev. 21 9 (in Chinese) [刘云燕, 袁玉珍, 李洁, 高绪团 2007 材料导报 21 9]

    [9]

    Song Z M, Zhao D X, Guo Z, Li B H, Zhang Z Z, Shen D Z 2012 Acta Phys. Sin. 61 052901(in Chinese) [宋志明, 赵东旭, 郭振, 李炳辉, 张振中, 申德振 2012 61 052901]

    [10]

    Inamdar S I, Rajpure K Y 2014 J. Alloys Compd. 595 55

    [11]

    Xu Q A, Zhang J W, Ju K R, Yang X D, Hou X 2006 J. Cryst. Growth 289 44

    [12]

    Panda S K, Jacob C 2012 Solid-State Electron. 73 44

    [13]

    Kind H, Yan H, Messer B, Law M, Yang P 2002 Adv. Mater. 14 158

    [14]

    Li Y, Feng S W, Sun J Y, Xie X S, Yang J, Zhang Y Z, Lu Y C 2006 2006 8th International Conference on Solid-State and Integrated Circuit Technology ProceedingsShanghai, 23-26 Oct. 2006, 947

    [15]

    Ma Y 2004 Ph. D. Dissertation (Chongqing: Chongqing University) (in Chinese) [马勇 2004 博士学位论文 (重庆: 重庆大学)]

    [16]

    He Y, Zhang W, Zhang S, Kang X, Peng W, Xu Y 2012 Sens. Actuators A 181 6

    [17]

    Zhao X L, Kang X, Chen L, Zhang Z B, Liu J L, Ouyang X P, Peng W B, He Y N 2014 Acta Phys. Sin. 63 098502(in Chinese) [赵小龙, 康雪, 陈亮, 张忠兵, 刘金良, 欧阳晓平, 彭文博, 贺永宁 2014 63 098502]

    [18]

    Peng W, He Y, Zhao X, Liu H, Kang X, Wen C 2013 J. Micromech. Microeng. 23 125008

  • [1]

    Wang X D, Summers C J, Wang Z L 2004 Nano Lett. 4 423

    [2]

    Sun H, Zhang Q F, Wu J L 2007 Acta Phys. Sin. 56 3479(in Chinese) [孙晖, 张琦峰, 吴锦雷 2007 56 3479]

    [3]

    Huang M, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P 2001 Sci. 292 1897

    [4]

    Liu R B, Zou B S 2011 Chin. Phys. B 20 047104

    [5]

    Yu C, Hao, Q, Saha S, Shi L, Yang X, Wang Z L 2005 Appl. Phys. Lett. 86 063101

    [6]

    Das S N, Moon K J, Kar J P, Choi J H, Xiong J J 2010 Appl. Phys. Lett. 97 022103

    [7]

    Wei M, Deng H, Wang P L, Li Y 2007 Mater Rev. 21 1 (in Chinese) [韦敏, 邓宏, 王培利, 李阳 2007 材料导报 21 1]

    [8]

    Liu Y Y, Yuan Y Z, Li J, Gao X T 2007 Mater Rev. 21 9 (in Chinese) [刘云燕, 袁玉珍, 李洁, 高绪团 2007 材料导报 21 9]

    [9]

    Song Z M, Zhao D X, Guo Z, Li B H, Zhang Z Z, Shen D Z 2012 Acta Phys. Sin. 61 052901(in Chinese) [宋志明, 赵东旭, 郭振, 李炳辉, 张振中, 申德振 2012 61 052901]

    [10]

    Inamdar S I, Rajpure K Y 2014 J. Alloys Compd. 595 55

    [11]

    Xu Q A, Zhang J W, Ju K R, Yang X D, Hou X 2006 J. Cryst. Growth 289 44

    [12]

    Panda S K, Jacob C 2012 Solid-State Electron. 73 44

    [13]

    Kind H, Yan H, Messer B, Law M, Yang P 2002 Adv. Mater. 14 158

    [14]

    Li Y, Feng S W, Sun J Y, Xie X S, Yang J, Zhang Y Z, Lu Y C 2006 2006 8th International Conference on Solid-State and Integrated Circuit Technology ProceedingsShanghai, 23-26 Oct. 2006, 947

    [15]

    Ma Y 2004 Ph. D. Dissertation (Chongqing: Chongqing University) (in Chinese) [马勇 2004 博士学位论文 (重庆: 重庆大学)]

    [16]

    He Y, Zhang W, Zhang S, Kang X, Peng W, Xu Y 2012 Sens. Actuators A 181 6

    [17]

    Zhao X L, Kang X, Chen L, Zhang Z B, Liu J L, Ouyang X P, Peng W B, He Y N 2014 Acta Phys. Sin. 63 098502(in Chinese) [赵小龙, 康雪, 陈亮, 张忠兵, 刘金良, 欧阳晓平, 彭文博, 贺永宁 2014 63 098502]

    [18]

    Peng W, He Y, Zhao X, Liu H, Kang X, Wen C 2013 J. Micromech. Microeng. 23 125008

  • [1] 刘玮, 冯秋菊, 宜子琪, 俞琛, 王硕, 王彦明, 隋雪, 梁红伟. Cu掺杂β-Ga2O3薄膜的制备及紫外探测性能.  , 2023, 72(19): 198503. doi: 10.7498/aps.72.20230971
    [2] 况丹, 徐爽, 史大为, 郭建, 喻志农. 基于铝纳米颗粒修饰的非晶氧化镓薄膜日盲紫外探测器.  , 2023, 72(3): 038501. doi: 10.7498/aps.72.20221476
    [3] 落巨鑫, 高红丽, 邓金祥, 任家辉, 张庆, 李瑞东, 孟雪. 退火温度对氧化镓薄膜及紫外探测器性能的影响.  , 2023, 72(2): 028502. doi: 10.7498/aps.72.20221716
    [4] 董典萌, 汪成, 张清怡, 张涛, 杨永涛, 夏翰驰, 王月晖, 吴真平. 基于HfO2插层的Ga2O3基金属-绝缘体-半导体结构日盲紫外光电探测器.  , 2023, 72(9): 097302. doi: 10.7498/aps.72.20222222
    [5] 刘增, 李磊, 支钰崧, 都灵, 方君鹏, 李山, 余建刚, 张茂林, 杨莉莉, 张少辉, 郭宇锋, 唐为华. 具有大光电导增益的氧化镓薄膜基深紫外探测器阵列.  , 2022, 71(20): 208501. doi: 10.7498/aps.71.20220859
    [6] 周树仁, 张红, 莫慧兰, 刘浩文, 熊元强, 李泓霖, 孔春阳, 叶利娟, 李万俊. N掺杂对${\boldsymbol\beta} $-Ga2O3薄膜日盲紫外探测器性能的影响.  , 2021, 70(17): 178503. doi: 10.7498/aps.70.20210434
    [7] 高飞, 南恒帅, 黄波, 汪丽, 李仕春, 王玉峰, 刘晶晶, 闫庆, 宋跃辉, 华灯鑫. 紫外域多纵模高光谱分辨率激光雷达探测气溶胶的技术实现和系统仿真.  , 2018, 67(3): 030701. doi: 10.7498/aps.67.20172036
    [8] 刘虎林, 王兴, 田进寿, 赛小锋, 韦永林, 温文龙, 王俊锋, 徐向晏, 王超, 卢裕, 何凯, 陈萍, 辛丽伟. 高分辨紫外电子轰击互补金属氧化物半导体器件的实验研究.  , 2018, 67(1): 014209. doi: 10.7498/aps.67.20171729
    [9] 李江江, 高志远, 薛晓玮, 李慧敏, 邓军, 崔碧峰, 邹德恕. 片上制备横向结构ZnO纳米线阵列紫外探测器件.  , 2016, 65(11): 118104. doi: 10.7498/aps.65.118104
    [10] 裴佳楠, 蒋大勇, 田春光, 郭泽萱, 刘如胜, 孙龙, 秦杰明, 侯建华, 赵建勋, 梁庆成, 高尚. 包埋Pt纳米粒子对金属-半导体-金属结构ZnO紫外光电探测器性能的影响.  , 2015, 64(6): 067802. doi: 10.7498/aps.64.067802
    [11] 吴萍, 张杰, 李喜峰, 陈凌翔, 汪雷, 吕建国. 室温生长ZnO薄膜晶体管的紫外响应特性.  , 2013, 62(1): 018101. doi: 10.7498/aps.62.018101
    [12] 王兰喜, 陈学康, 吴敢, 曹生珠, 尚凯文. 晶界对金刚石紫外探测器时间响应性能的影响.  , 2012, 61(3): 038101. doi: 10.7498/aps.61.038101
    [13] 宋志明, 赵东旭, 郭振, 李炳辉, 张振中, 申德振. ZnO纳米线紫外探测器的制备和快速响应性能的研究.  , 2012, 61(5): 052901. doi: 10.7498/aps.61.052901
    [14] 邓懿, 赵德刚, 吴亮亮, 刘宗顺, 朱建军, 江德生, 张书明, 梁骏吾. 器件参数对GaN基n+-GaN/i-Alx Ga1-xN/n+-GaN结构紫外和红外双色探测器中紫外响应的影响.  , 2010, 59(12): 8903-8909. doi: 10.7498/aps.59.8903
    [15] 黄金华, 张 琨, 潘 楠, 高志伟, 王晓平. 表面修饰ZnO纳米线紫外光响应的增强效应.  , 2008, 57(12): 7855-7859. doi: 10.7498/aps.57.7855
    [16] 张德恒, 王卿璞, 薛忠营. 不同衬底上的ZnO薄膜紫外光致发光.  , 2003, 52(6): 1484-1487. doi: 10.7498/aps.52.1484
    [17] 陈长虹, 易新建, 熊笔锋. 基于VO2薄膜非致冷红外探测器光电响应研究.  , 2001, 50(3): 450-452. doi: 10.7498/aps.50.450
    [18] 林碧霞, 傅竹西, 贾云波, 廖桂红. 非掺杂ZnO薄膜中紫外与绿色发光中心.  , 2001, 50(11): 2208-2211. doi: 10.7498/aps.50.2208
    [19] 陈岩松. 铁电薄膜探测器PbZrTiO3的红外光电响应实验研究.  , 1998, 47(8): 1378-1382. doi: 10.7498/aps.47.1378
    [20] 徐锋, 刘辽. 瞬时响应的粒子探测器模型.  , 1988, 37(8): 1267-1274. doi: 10.7498/aps.37.1267
计量
  • 文章访问数:  7438
  • PDF下载量:  471
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-06
  • 修回日期:  2015-05-29
  • 刊出日期:  2015-10-05

/

返回文章
返回
Baidu
map