搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

AlN插入层对AlxGa1-xN/GaN界面电子散射的影响

杨鹏 吕燕伍 王鑫波

引用本文:
Citation:

AlN插入层对AlxGa1-xN/GaN界面电子散射的影响

杨鹏, 吕燕伍, 王鑫波

Effect of inserted AlN layer on the two-dimensional electron gas in AlxGa1-xN/AlN/GaN

Yang Peng, Lü Yan-Wu, Wang Xin-Bo
PDF
导出引用
  • 本文研究AlN作为AlxGa1-xN/GaN插入层引起的电子输运性质的变化, 考虑了AlxGa1-xN和AlN势垒层的自发极化、压电极化对AlxGa1-xN/AlN/GaN双异质结高电子迁移率晶体管(HEMT)中极化电荷面密度、二维电子气(2DEG) 浓度的影响, 分析了AlN厚度与界面粗糙度散射和合金无序散射的关系; 结果表明, 2DEG 浓度、界面粗糙度散射和合金无序散射依赖于AlN层厚度, 插入一层13 nm薄的AlN层, 可以明显提高电子迁移率.
    This paper investigates the changes of electron transport properties in AlxGa1-xN/GaN with an inserted AlN layer. The polarization charge density and two-dimensional electron gas (2DEG) sheet density in AlxGa1-xN/AlN/GaN double heterojunction high electron mobility transistors (HEMT) affected by the spontaneous polarization and piezoelectric polarization in AlxGa1-xN and AlN barrier are studied. Relations of interface roughness scattering and alloy disorder scattering with the AlN thickness are systematically analyzed. It is found that the alloy disorder scattering is the main scattering mechanism in AlxGa1-xN/GaN heterojunction high-electron-mobility transistors, while the interface roughness scattering is the main scattering mechanism in AlxGa1-xN/AlN/GaN double-heterojunction structure. It is also known that the 2DEG sheet density, interface roughness scattering and alloy disorder scattering are depended on the thickness of the inserted AlN layer. The 2DEG sheet density increases slightly and the mobility increases obviously by inserting an AlN layer about 13 nm. Taking Al mole fraction of 0.3 as an example, if without AlN layer, the 2DEG sheet density is 1.47 1013 cm-2 with the mobility limited by the interface roughness scattering of 1.15 104 cm2V-1-1, and the mobility limited by alloy disorder scattering of 6.07 102cm2V-1-1. After inserting an AlN layer of 1 nm, the 2DEG sheet density increases to 1.66 1013cm-2, and the mobility limited by the interface roughness scattering reduces to 7.88 103cm2V-1-1 while the mobility limited by alloy disorder scattering increases greatly up to 1.42 108 cm2V-1-1.
      通信作者: 吕燕伍, ywlu@bjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 60976070) 资助的课题.
      Corresponding author: Lü Yan-Wu, ywlu@bjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 60976070).
    [1]

    zgr A, Kim W, Fan Z, Botchkarev A, Salvador A, Mohammed S N, Sverdlov B, Morkoc H 1995 Electron. Lett. 31 1389

    [2]

    Khan M A, Chen Q, Shur M S, Dermott B T, Higgins J A, Burm J, Schaff W, Eastman L F 1996 IEEE Electron Device Lett. 17 584

    [3]

    Binari S C, Redwing J M, Kelner G, Kruppa W 1997 Electron. Lett. 33 242

    [4]

    Ando T, Fowler A B, Stern F 1982 Rev. Mod. Phys. 54 437

    [5]

    Cao Y, Xing H, Jena D 2010 Appl. Phys. Lett. 97 222116

    [6]

    Masselink T, W 1991 Phys. Rev. Lett. 66 1513

    [7]

    Hsu L, Walukiewicz W 1997 Phys. Rev. B 56 1520

    [8]

    Wu M, Zheng D Y, Wang Y, Chen W W, Zhang K, Ma X H, Zhang J C, Hao Y 2014 Chin. Phys. B 23 097307

    [9]

    Tang C, Xie G, Zhang L, Guo Q, Wang T, Sheng K 2013 Chin. Phys. B 22 0106107

    [10]

    Ji D, Liu B, L Y W, Zou M, Fan B L 2012 Chin. Phys. B 21 067201

    [11]

    Duan B X, Yang Y T 2014 Acta Phys. Sin. 63 057302(in Chinese) [段宝兴, 杨银堂 2014 63 057302]

    [12]

    Zhu Y X, Cao W W, Xu C, Deng Y, Zou D S 2014 Acta Phys. Sin. 63 117302(in Chinese) [朱彦旭, 曹伟伟, 徐晨, 邓叶, 邹德恕 2014 63 117302]

    [13]

    Yan J D, Wang X L, Wang Q, Qu S, Xiao H L, Peng E C, Kang H, Wang C M, Feng C, Yin H B, Jiang L J, Li B Q, Wang Z G, Hou X 2014 J. Appl. Phys. 116 054502

    [14]

    Smorchkova I P, Chen L, Mates T, Shen L, Heikman S, Moran B, Keller S, DenBaars S P, Speck J S, Mishra U K 2001 J. Appl. Phys. 90 5196

    [15]

    Kim T W, Choo D C, Yoo K H, Jung M H, Cho Y H, Jae-Lee H, Jung-Lee H 2005 J. Appl. Phys. 97 103721

    [16]

    Zhou Z T, Guo L W, Xing Z G, Ding G J, Tan C L, L L, Liu J, Liu X Y, Jia H Q, Chen H, Zhou J M 2007 Acta Phys. Sin. 56 6013(in Chinese) [周忠堂, 郭丽伟, 邢志刚, 丁国建, 谭长林, 吕力, 刘建, 刘新宇, 贾海强, 陈弘, 周均铭 2007 56 6013]

    [17]

    Makoto Miyoshi, Takashi Egawa, Hiroyasu Ishikawa, Kei-Ichiro Asai, Tomohiko Shibata, Mitsuhiro Tanaka, Osamu Oda 2005 J. Appl. Phys. 98 063713

    [18]

    Yu Y X, Lin Z J, Luan C B, L Y J, Feng Z H, Yang M, Wang Y, Chen H 2013 AIP Adv. 3 092115

    [19]

    Luan C B, Lin Z J, L Y J, Zhao J T, Wang Y, Chen H, Wang Z G 2014 J. Appl. Phys. 116 044507

    [20]

    Hu W D, Chen X S, Yin F, Zhang J B, Luc W 2009 J. Appl. Phys. 105 084502

    [21]

    Ambacher O, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Schaff W J, Eastman L F, Dimitrov R, Wittmer L, Stutzmann M, Rieger W, Hilsenbeck J 1999 J. Appl. Phys. 85 3222

    [22]

    Wang X D, Hu W D, Chen X S, Lu W 2012 IEEE Trans. Electron Devices 59 1393

    [23]

    Zhang Y M, Feng S W, Zhu H, Zhang G C, Deng B, Ma L 2013 J. Appl. Phys. 114 094516

    [24]

    Zhang Y M, Feng S W, Zhu H, Zhang J, Deng B 2013 Microelectron. Reliab. 53 694

    [25]

    Nitin Goyal, Benjamin Iiguez, Tor A. Fjeldly 2012 Appl. Phys. Lett. 101 103505

    [26]

    Ferry D K, Goodnick S M, Bird J 2009 Transport in Nanostructures (2nd Ed.) (Cambridge: Cambridge University Press) p95

    [27]

    Liu B, Lu Y W, Jin G R, Zhao Y, Wang X L, Zhu Q S, Wang Z G 2010 Appl. Phys. Lett. 97 262111

    [28]

    Enrico Bellotti, Francesco Bertazzi, Michele Goano 2007 J. Appl. Phys. 101 123706

  • [1]

    zgr A, Kim W, Fan Z, Botchkarev A, Salvador A, Mohammed S N, Sverdlov B, Morkoc H 1995 Electron. Lett. 31 1389

    [2]

    Khan M A, Chen Q, Shur M S, Dermott B T, Higgins J A, Burm J, Schaff W, Eastman L F 1996 IEEE Electron Device Lett. 17 584

    [3]

    Binari S C, Redwing J M, Kelner G, Kruppa W 1997 Electron. Lett. 33 242

    [4]

    Ando T, Fowler A B, Stern F 1982 Rev. Mod. Phys. 54 437

    [5]

    Cao Y, Xing H, Jena D 2010 Appl. Phys. Lett. 97 222116

    [6]

    Masselink T, W 1991 Phys. Rev. Lett. 66 1513

    [7]

    Hsu L, Walukiewicz W 1997 Phys. Rev. B 56 1520

    [8]

    Wu M, Zheng D Y, Wang Y, Chen W W, Zhang K, Ma X H, Zhang J C, Hao Y 2014 Chin. Phys. B 23 097307

    [9]

    Tang C, Xie G, Zhang L, Guo Q, Wang T, Sheng K 2013 Chin. Phys. B 22 0106107

    [10]

    Ji D, Liu B, L Y W, Zou M, Fan B L 2012 Chin. Phys. B 21 067201

    [11]

    Duan B X, Yang Y T 2014 Acta Phys. Sin. 63 057302(in Chinese) [段宝兴, 杨银堂 2014 63 057302]

    [12]

    Zhu Y X, Cao W W, Xu C, Deng Y, Zou D S 2014 Acta Phys. Sin. 63 117302(in Chinese) [朱彦旭, 曹伟伟, 徐晨, 邓叶, 邹德恕 2014 63 117302]

    [13]

    Yan J D, Wang X L, Wang Q, Qu S, Xiao H L, Peng E C, Kang H, Wang C M, Feng C, Yin H B, Jiang L J, Li B Q, Wang Z G, Hou X 2014 J. Appl. Phys. 116 054502

    [14]

    Smorchkova I P, Chen L, Mates T, Shen L, Heikman S, Moran B, Keller S, DenBaars S P, Speck J S, Mishra U K 2001 J. Appl. Phys. 90 5196

    [15]

    Kim T W, Choo D C, Yoo K H, Jung M H, Cho Y H, Jae-Lee H, Jung-Lee H 2005 J. Appl. Phys. 97 103721

    [16]

    Zhou Z T, Guo L W, Xing Z G, Ding G J, Tan C L, L L, Liu J, Liu X Y, Jia H Q, Chen H, Zhou J M 2007 Acta Phys. Sin. 56 6013(in Chinese) [周忠堂, 郭丽伟, 邢志刚, 丁国建, 谭长林, 吕力, 刘建, 刘新宇, 贾海强, 陈弘, 周均铭 2007 56 6013]

    [17]

    Makoto Miyoshi, Takashi Egawa, Hiroyasu Ishikawa, Kei-Ichiro Asai, Tomohiko Shibata, Mitsuhiro Tanaka, Osamu Oda 2005 J. Appl. Phys. 98 063713

    [18]

    Yu Y X, Lin Z J, Luan C B, L Y J, Feng Z H, Yang M, Wang Y, Chen H 2013 AIP Adv. 3 092115

    [19]

    Luan C B, Lin Z J, L Y J, Zhao J T, Wang Y, Chen H, Wang Z G 2014 J. Appl. Phys. 116 044507

    [20]

    Hu W D, Chen X S, Yin F, Zhang J B, Luc W 2009 J. Appl. Phys. 105 084502

    [21]

    Ambacher O, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Schaff W J, Eastman L F, Dimitrov R, Wittmer L, Stutzmann M, Rieger W, Hilsenbeck J 1999 J. Appl. Phys. 85 3222

    [22]

    Wang X D, Hu W D, Chen X S, Lu W 2012 IEEE Trans. Electron Devices 59 1393

    [23]

    Zhang Y M, Feng S W, Zhu H, Zhang G C, Deng B, Ma L 2013 J. Appl. Phys. 114 094516

    [24]

    Zhang Y M, Feng S W, Zhu H, Zhang J, Deng B 2013 Microelectron. Reliab. 53 694

    [25]

    Nitin Goyal, Benjamin Iiguez, Tor A. Fjeldly 2012 Appl. Phys. Lett. 101 103505

    [26]

    Ferry D K, Goodnick S M, Bird J 2009 Transport in Nanostructures (2nd Ed.) (Cambridge: Cambridge University Press) p95

    [27]

    Liu B, Lu Y W, Jin G R, Zhao Y, Wang X L, Zhu Q S, Wang Z G 2010 Appl. Phys. Lett. 97 262111

    [28]

    Enrico Bellotti, Francesco Bertazzi, Michele Goano 2007 J. Appl. Phys. 101 123706

  • [1] 张磊, 陈起航, 曹硕, 钱萍. 基于第一性原理计算单层IrSCl和IrSI的载流子迁移率.  , 2024, 73(21): 217201. doi: 10.7498/aps.73.20241044
    [2] 张冷, 沈宇皓, 汤朝阳, 吴孔平, 张鹏展, 刘飞, 侯纪伟. 单轴应变对Sb2Se3空穴迁移率的影响.  , 2024, 73(11): 117101. doi: 10.7498/aps.73.20240175
    [3] 张冷, 张鹏展, 刘飞, 李方政, 罗毅, 侯纪伟, 吴孔平. 基于形变势理论的掺杂计算Sb2Se3空穴迁移率.  , 2024, 73(4): 047101. doi: 10.7498/aps.73.20231406
    [4] 周展辉, 李群, 贺小敏. AlN/β-Ga2O3异质结电子输运机制.  , 2023, 72(2): 028501. doi: 10.7498/aps.72.20221545
    [5] 宋莉娜, 吕燕伍. InGaN插入层对AlGaN/GaN界面电子散射的影响.  , 2021, 70(17): 177201. doi: 10.7498/aps.70.20202223
    [6] 陈谦, 李群, 杨莺. AlGaN插入层对InAlN/AlGaN/GaN异质结散射机制的影响.  , 2019, 68(1): 017301. doi: 10.7498/aps.68.20181663
    [7] 底琳佳, 戴显英, 宋建军, 苗东铭, 赵天龙, 吴淑静, 郝跃. 基于锡组分和双轴张应力调控的临界带隙应变Ge1-xSnx能带特性与迁移率计算.  , 2018, 67(2): 027101. doi: 10.7498/aps.67.20171969
    [8] 白敏, 宣荣喜, 宋建军, 张鹤鸣, 胡辉勇, 舒斌. 压应变Ge/(001)Si1-xGex空穴散射与迁移率模型.  , 2015, 64(3): 038501. doi: 10.7498/aps.64.038501
    [9] 刘宾礼, 唐勇, 罗毅飞, 刘德志, 王瑞田, 汪波. 基于电压变化率的IGBT结温预测模型研究.  , 2014, 63(17): 177201. doi: 10.7498/aps.63.177201
    [10] 董海明. 低温下二硫化钼电子迁移率研究.  , 2013, 62(20): 206101. doi: 10.7498/aps.62.206101
    [11] 於黄忠. 空间电荷限制电流法测量共混体系中空穴的迁移率.  , 2012, 61(8): 087204. doi: 10.7498/aps.61.087204
    [12] 骆杨, 段羽, 陈平, 臧春亮, 谢月, 赵毅, 刘式墉. 利用空间电荷限制电流方法确定三(8-羟基喹啉)铝的电子迁移率特性初步研究.  , 2012, 61(14): 147801. doi: 10.7498/aps.61.147801
    [13] 宋建军, 张鹤鸣, 胡辉勇, 王晓艳, 王冠宇. 四方晶系应变Si空穴散射机制.  , 2012, 61(5): 057304. doi: 10.7498/aps.61.057304
    [14] 张金风, 王平亚, 薛军帅, 周勇波, 张进成, 郝跃. 高电子迁移率晶格匹配InAlN/GaN材料研究.  , 2011, 60(11): 117305. doi: 10.7498/aps.60.117305
    [15] 代月花, 陈军宁, 柯导明, 孙家讹, 胡 媛. 纳米MOSFET迁移率解析模型.  , 2006, 55(11): 6090-6094. doi: 10.7498/aps.55.6090
    [16] 杨 靖, 李景镇, 孙秀泉, 龚向东. 硅烷低温等离子体阶跃响应的仿真(1).  , 2005, 54(7): 3251-3256. doi: 10.7498/aps.54.3251
    [17] 徐静平, 李春霞, 吴海平. 4H-SiC n-MOSFET的高温特性分析.  , 2005, 54(6): 2918-2923. doi: 10.7498/aps.54.2918
    [18] 许雪梅, 彭景翠, 李宏建, 瞿述, 罗小华. 载流子迁移率对单层有机发光二极管复合效率的影响.  , 2002, 51(10): 2380-2385. doi: 10.7498/aps.51.2380
    [19] 尚也淳, 张义门, 张玉明. SiC/SiO2界面粗糙散射对沟道迁移率影响的Monte Carlo研究.  , 2001, 50(7): 1350-1354. doi: 10.7498/aps.50.1350
    [20] 李志锋, 陆 卫, 叶红娟, 袁先璋, 沈学础, G.Li, S.J.Chua. GaN载流子浓度和迁移率的光谱研究.  , 2000, 49(8): 1614-1619. doi: 10.7498/aps.49.1614
计量
  • 文章访问数:  6958
  • PDF下载量:  248
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-19
  • 修回日期:  2015-05-28
  • 刊出日期:  2015-10-05

/

返回文章
返回
Baidu
map