-
This paper investigates the changes of electron transport properties in AlxGa1-xN/GaN with an inserted AlN layer. The polarization charge density and two-dimensional electron gas (2DEG) sheet density in AlxGa1-xN/AlN/GaN double heterojunction high electron mobility transistors (HEMT) affected by the spontaneous polarization and piezoelectric polarization in AlxGa1-xN and AlN barrier are studied. Relations of interface roughness scattering and alloy disorder scattering with the AlN thickness are systematically analyzed. It is found that the alloy disorder scattering is the main scattering mechanism in AlxGa1-xN/GaN heterojunction high-electron-mobility transistors, while the interface roughness scattering is the main scattering mechanism in AlxGa1-xN/AlN/GaN double-heterojunction structure. It is also known that the 2DEG sheet density, interface roughness scattering and alloy disorder scattering are depended on the thickness of the inserted AlN layer. The 2DEG sheet density increases slightly and the mobility increases obviously by inserting an AlN layer about 13 nm. Taking Al mole fraction of 0.3 as an example, if without AlN layer, the 2DEG sheet density is 1.47 1013 cm-2 with the mobility limited by the interface roughness scattering of 1.15 104 cm2V-1-1, and the mobility limited by alloy disorder scattering of 6.07 102cm2V-1-1. After inserting an AlN layer of 1 nm, the 2DEG sheet density increases to 1.66 1013cm-2, and the mobility limited by the interface roughness scattering reduces to 7.88 103cm2V-1-1 while the mobility limited by alloy disorder scattering increases greatly up to 1.42 108 cm2V-1-1.
-
Keywords:
- 2DEG sheet density /
- mobility /
- interface roughness scattering /
- alloy disorder scattering
[1] zgr A, Kim W, Fan Z, Botchkarev A, Salvador A, Mohammed S N, Sverdlov B, Morkoc H 1995 Electron. Lett. 31 1389
[2] Khan M A, Chen Q, Shur M S, Dermott B T, Higgins J A, Burm J, Schaff W, Eastman L F 1996 IEEE Electron Device Lett. 17 584
[3] Binari S C, Redwing J M, Kelner G, Kruppa W 1997 Electron. Lett. 33 242
[4] Ando T, Fowler A B, Stern F 1982 Rev. Mod. Phys. 54 437
[5] Cao Y, Xing H, Jena D 2010 Appl. Phys. Lett. 97 222116
[6] Masselink T, W 1991 Phys. Rev. Lett. 66 1513
[7] Hsu L, Walukiewicz W 1997 Phys. Rev. B 56 1520
[8] Wu M, Zheng D Y, Wang Y, Chen W W, Zhang K, Ma X H, Zhang J C, Hao Y 2014 Chin. Phys. B 23 097307
[9] Tang C, Xie G, Zhang L, Guo Q, Wang T, Sheng K 2013 Chin. Phys. B 22 0106107
[10] Ji D, Liu B, L Y W, Zou M, Fan B L 2012 Chin. Phys. B 21 067201
[11] Duan B X, Yang Y T 2014 Acta Phys. Sin. 63 057302(in Chinese) [段宝兴, 杨银堂 2014 63 057302]
[12] Zhu Y X, Cao W W, Xu C, Deng Y, Zou D S 2014 Acta Phys. Sin. 63 117302(in Chinese) [朱彦旭, 曹伟伟, 徐晨, 邓叶, 邹德恕 2014 63 117302]
[13] Yan J D, Wang X L, Wang Q, Qu S, Xiao H L, Peng E C, Kang H, Wang C M, Feng C, Yin H B, Jiang L J, Li B Q, Wang Z G, Hou X 2014 J. Appl. Phys. 116 054502
[14] Smorchkova I P, Chen L, Mates T, Shen L, Heikman S, Moran B, Keller S, DenBaars S P, Speck J S, Mishra U K 2001 J. Appl. Phys. 90 5196
[15] Kim T W, Choo D C, Yoo K H, Jung M H, Cho Y H, Jae-Lee H, Jung-Lee H 2005 J. Appl. Phys. 97 103721
[16] Zhou Z T, Guo L W, Xing Z G, Ding G J, Tan C L, L L, Liu J, Liu X Y, Jia H Q, Chen H, Zhou J M 2007 Acta Phys. Sin. 56 6013(in Chinese) [周忠堂, 郭丽伟, 邢志刚, 丁国建, 谭长林, 吕力, 刘建, 刘新宇, 贾海强, 陈弘, 周均铭 2007 56 6013]
[17] Makoto Miyoshi, Takashi Egawa, Hiroyasu Ishikawa, Kei-Ichiro Asai, Tomohiko Shibata, Mitsuhiro Tanaka, Osamu Oda 2005 J. Appl. Phys. 98 063713
[18] Yu Y X, Lin Z J, Luan C B, L Y J, Feng Z H, Yang M, Wang Y, Chen H 2013 AIP Adv. 3 092115
[19] Luan C B, Lin Z J, L Y J, Zhao J T, Wang Y, Chen H, Wang Z G 2014 J. Appl. Phys. 116 044507
[20] Hu W D, Chen X S, Yin F, Zhang J B, Luc W 2009 J. Appl. Phys. 105 084502
[21] Ambacher O, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Schaff W J, Eastman L F, Dimitrov R, Wittmer L, Stutzmann M, Rieger W, Hilsenbeck J 1999 J. Appl. Phys. 85 3222
[22] Wang X D, Hu W D, Chen X S, Lu W 2012 IEEE Trans. Electron Devices 59 1393
[23] Zhang Y M, Feng S W, Zhu H, Zhang G C, Deng B, Ma L 2013 J. Appl. Phys. 114 094516
[24] Zhang Y M, Feng S W, Zhu H, Zhang J, Deng B 2013 Microelectron. Reliab. 53 694
[25] Nitin Goyal, Benjamin Iiguez, Tor A. Fjeldly 2012 Appl. Phys. Lett. 101 103505
[26] Ferry D K, Goodnick S M, Bird J 2009 Transport in Nanostructures (2nd Ed.) (Cambridge: Cambridge University Press) p95
[27] Liu B, Lu Y W, Jin G R, Zhao Y, Wang X L, Zhu Q S, Wang Z G 2010 Appl. Phys. Lett. 97 262111
[28] Enrico Bellotti, Francesco Bertazzi, Michele Goano 2007 J. Appl. Phys. 101 123706
-
[1] zgr A, Kim W, Fan Z, Botchkarev A, Salvador A, Mohammed S N, Sverdlov B, Morkoc H 1995 Electron. Lett. 31 1389
[2] Khan M A, Chen Q, Shur M S, Dermott B T, Higgins J A, Burm J, Schaff W, Eastman L F 1996 IEEE Electron Device Lett. 17 584
[3] Binari S C, Redwing J M, Kelner G, Kruppa W 1997 Electron. Lett. 33 242
[4] Ando T, Fowler A B, Stern F 1982 Rev. Mod. Phys. 54 437
[5] Cao Y, Xing H, Jena D 2010 Appl. Phys. Lett. 97 222116
[6] Masselink T, W 1991 Phys. Rev. Lett. 66 1513
[7] Hsu L, Walukiewicz W 1997 Phys. Rev. B 56 1520
[8] Wu M, Zheng D Y, Wang Y, Chen W W, Zhang K, Ma X H, Zhang J C, Hao Y 2014 Chin. Phys. B 23 097307
[9] Tang C, Xie G, Zhang L, Guo Q, Wang T, Sheng K 2013 Chin. Phys. B 22 0106107
[10] Ji D, Liu B, L Y W, Zou M, Fan B L 2012 Chin. Phys. B 21 067201
[11] Duan B X, Yang Y T 2014 Acta Phys. Sin. 63 057302(in Chinese) [段宝兴, 杨银堂 2014 63 057302]
[12] Zhu Y X, Cao W W, Xu C, Deng Y, Zou D S 2014 Acta Phys. Sin. 63 117302(in Chinese) [朱彦旭, 曹伟伟, 徐晨, 邓叶, 邹德恕 2014 63 117302]
[13] Yan J D, Wang X L, Wang Q, Qu S, Xiao H L, Peng E C, Kang H, Wang C M, Feng C, Yin H B, Jiang L J, Li B Q, Wang Z G, Hou X 2014 J. Appl. Phys. 116 054502
[14] Smorchkova I P, Chen L, Mates T, Shen L, Heikman S, Moran B, Keller S, DenBaars S P, Speck J S, Mishra U K 2001 J. Appl. Phys. 90 5196
[15] Kim T W, Choo D C, Yoo K H, Jung M H, Cho Y H, Jae-Lee H, Jung-Lee H 2005 J. Appl. Phys. 97 103721
[16] Zhou Z T, Guo L W, Xing Z G, Ding G J, Tan C L, L L, Liu J, Liu X Y, Jia H Q, Chen H, Zhou J M 2007 Acta Phys. Sin. 56 6013(in Chinese) [周忠堂, 郭丽伟, 邢志刚, 丁国建, 谭长林, 吕力, 刘建, 刘新宇, 贾海强, 陈弘, 周均铭 2007 56 6013]
[17] Makoto Miyoshi, Takashi Egawa, Hiroyasu Ishikawa, Kei-Ichiro Asai, Tomohiko Shibata, Mitsuhiro Tanaka, Osamu Oda 2005 J. Appl. Phys. 98 063713
[18] Yu Y X, Lin Z J, Luan C B, L Y J, Feng Z H, Yang M, Wang Y, Chen H 2013 AIP Adv. 3 092115
[19] Luan C B, Lin Z J, L Y J, Zhao J T, Wang Y, Chen H, Wang Z G 2014 J. Appl. Phys. 116 044507
[20] Hu W D, Chen X S, Yin F, Zhang J B, Luc W 2009 J. Appl. Phys. 105 084502
[21] Ambacher O, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Schaff W J, Eastman L F, Dimitrov R, Wittmer L, Stutzmann M, Rieger W, Hilsenbeck J 1999 J. Appl. Phys. 85 3222
[22] Wang X D, Hu W D, Chen X S, Lu W 2012 IEEE Trans. Electron Devices 59 1393
[23] Zhang Y M, Feng S W, Zhu H, Zhang G C, Deng B, Ma L 2013 J. Appl. Phys. 114 094516
[24] Zhang Y M, Feng S W, Zhu H, Zhang J, Deng B 2013 Microelectron. Reliab. 53 694
[25] Nitin Goyal, Benjamin Iiguez, Tor A. Fjeldly 2012 Appl. Phys. Lett. 101 103505
[26] Ferry D K, Goodnick S M, Bird J 2009 Transport in Nanostructures (2nd Ed.) (Cambridge: Cambridge University Press) p95
[27] Liu B, Lu Y W, Jin G R, Zhao Y, Wang X L, Zhu Q S, Wang Z G 2010 Appl. Phys. Lett. 97 262111
[28] Enrico Bellotti, Francesco Bertazzi, Michele Goano 2007 J. Appl. Phys. 101 123706
计量
- 文章访问数: 6958
- PDF下载量: 248
- 被引次数: 0