搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

AlGaN插入层对InAlN/AlGaN/GaN异质结散射机制的影响

陈谦 李群 杨莺

引用本文:
Citation:

AlGaN插入层对InAlN/AlGaN/GaN异质结散射机制的影响

陈谦, 李群, 杨莺

Effects of AlGaN interlayer on scattering mechanisms in InAlN/AlGaN/GaN heterostructures

Chen Qian, Li Qun, Yang Ying
PDF
导出引用
  • InAlN/AlN/GaN异质结中,名义上的AlN插入层实为Ga含量很高的AlGaN层,Al,Ga摩尔百分比决定了电子波函数与隧穿几率,因此影响与InAlN/AlGaN势垒层有关的散射机制.本文通过求解薛定谔-泊松方程与输运方程,研究了AlGaN层Al摩尔百分含量对InAlN组分不均匀导致的子带能级波动散射、导带波动散射以及合金无序散射三种散射机制的影响.结果显示:当Al含量由0增大到1,子带能级波动散射强度与合金无序散射强度先增大后减小,导带波动散射强度单调减小;在Al含量为0.1附近的小组分范围内,合金无序散射是限制迁移率的主要散射机制,该组分范围之外,子带能级波动散射是限制迁移率的主要散射机制;当Al摩尔百分含量超过0.52,三种散射机制共同限制的迁移率超过无插入层结构的迁移率,AlGaN层显示出对迁移率的提升作用.
    Recent studies showed that the nominal AlN interlayers in InAlN/AlN/GaN heterostructures had high GaN mole fractions, especially those grown by metalorganic chemical vapor deposition. The Al and Ga mole fraction in the AlGaN interlayer determine the electron wave function and penetration probability, and thus affecting the scattering mechanism related to the InAlN/AlGaN potential layers. In this paper we study the effects of Al mole fraction of the AlGaN interlayer on three scattering mechanisms related to the potential layer, i.e. alloy disorder scattering, subband energy fluctuation scattering and conduction band fluctuation scattering induced by In compositionally inhomogeneous InAlN layer. The wave function and penetration probability in the InAlN/AlGaN/GaN heterostructure are determined by self-consistently calculating the Schrödinger-Poisson equations and then used to calculate the scattering mechanisms. The results show that penetration probabilities in the InAlN and AlGaN both decrease with increasing Al mole fraction. The combination of the contribution of the screening effect and the two-dimensional electron gas (2DEG) density inhomogeneity results in an initial decrease and subsequent increase in the subband energy fluctuation scattering-limited mobility with increasing Al mole fraction, and the heterostructure with a smaller InAlN thickness has a larger mobility increase. The penetration probability and non-periodic arrangement of Al and Ga in the AlGaN predict an Al mole fraction dependence of the alloy disorder scattering-limited mobility similar to the subband energy fluctuation scattering-limited mobility, and the alloy disorder scattering occurs mainly in the AlGaN because the penetration probability in the AlGaN is much higher than in the InAlN. The conduction band fluctuation scattering-limited mobility monotonically increases with increasing Al mole fraction due to the decrease of the penetration probability. The subband energy fluctuation scattering-limited mobility is less sensitive to variation in the Al mole fraction than the other two scattering mechanisms-limited mobilities. In a small Al mole fraction range around 0.1, the alloy disorder scattering is a dominant scattering mechanism, while the subband energy fluctuation scattering dominates the mobility beyond this compositional range. When Al mole fraction is above 0.52, the three scattering mechanisms-limited mobility exceeds that in the InAlN/GaN heterostructure without the AlGaN interlayer, indicating the promotion of the mobility by the AlGaN interlayer. The mobility is raised by more than 50 percent in the InAlN/AlN/GaN heterostructure with an AlN interlayer compared with that in the InAlN/GaN heterostructure without the interlayer.
    [1]

    Xue J S, Zhang J C, Hou Y W, Zhou H, Zhang J F, Hao Y 2012 Appl. Phys. Lett. 100 013507

    [2]

    Kaun S W, Ahmadi E, Mazumder B, Wu F, Kyle E C H, Burke P G, Mishra U K, Speck J S 2014 Semicond. Sci. Technol. 29 045011

    [3]

    Higashiwaki M, Chowdhury S, Miao M S, Swenson B L, van der Walle C G, Mishra U K 2010 J. Appl. Phys. 108 063719

    [4]

    Fang Y L, Feng Z H, Yin J Y, Zhang Z R, Lü Y J, Dun S B, Liu B, Li C M, Cai S J 2015 Phys. Status Solidi B 252 1006

    [5]

    Ahmadi E, Chalabi H, Kaun S W, Shivaraman R, Speck J S, Mishra U K 2014 J. Appl. Phys. 116 133702

    [6]

    Li Q, Chen Q, Chong J 2017 AIP Adv. 7 125103

    [7]

    Mazumder B, Kaun S W, Lu J, Keller S, Mishra U K, Speck J S 2013 Appl. Phys. Lett. 102 111603

    [8]

    Sridhara Rao D V, Jain A, Lamba S, Muraleedharan K, Muralidharan R 2013 Appl. Phys. Lett. 102 191604

    [9]

    Ambacher O, Foutz B, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Sierakowski A J, Schaff W J, Eastman L F 2000 J. Appl. Phys. 87 334

    [10]

    Jiao W, Kong W, Li J, Collar K, Kim T H, Losurdo M, Brown A S 2016 Appl. Phys. Lett. 109 082103

    [11]

    Li Q, Zhang J W, Zhang Z Y, Li F N, Hou X 2014 Semicond. Sci. Technol. 29 115001

    [12]

    Quang D N, Tung N H, Tuoc V N, Minh N V, Huy H A, Hien D T 2006 Phys. Rev. B 74 205312

    [13]

    Lee K S, Yoon D H, Bae S B, Park M R, Kim G H 2002 ETRI J. 24 270

  • [1]

    Xue J S, Zhang J C, Hou Y W, Zhou H, Zhang J F, Hao Y 2012 Appl. Phys. Lett. 100 013507

    [2]

    Kaun S W, Ahmadi E, Mazumder B, Wu F, Kyle E C H, Burke P G, Mishra U K, Speck J S 2014 Semicond. Sci. Technol. 29 045011

    [3]

    Higashiwaki M, Chowdhury S, Miao M S, Swenson B L, van der Walle C G, Mishra U K 2010 J. Appl. Phys. 108 063719

    [4]

    Fang Y L, Feng Z H, Yin J Y, Zhang Z R, Lü Y J, Dun S B, Liu B, Li C M, Cai S J 2015 Phys. Status Solidi B 252 1006

    [5]

    Ahmadi E, Chalabi H, Kaun S W, Shivaraman R, Speck J S, Mishra U K 2014 J. Appl. Phys. 116 133702

    [6]

    Li Q, Chen Q, Chong J 2017 AIP Adv. 7 125103

    [7]

    Mazumder B, Kaun S W, Lu J, Keller S, Mishra U K, Speck J S 2013 Appl. Phys. Lett. 102 111603

    [8]

    Sridhara Rao D V, Jain A, Lamba S, Muraleedharan K, Muralidharan R 2013 Appl. Phys. Lett. 102 191604

    [9]

    Ambacher O, Foutz B, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Sierakowski A J, Schaff W J, Eastman L F 2000 J. Appl. Phys. 87 334

    [10]

    Jiao W, Kong W, Li J, Collar K, Kim T H, Losurdo M, Brown A S 2016 Appl. Phys. Lett. 109 082103

    [11]

    Li Q, Zhang J W, Zhang Z Y, Li F N, Hou X 2014 Semicond. Sci. Technol. 29 115001

    [12]

    Quang D N, Tung N H, Tuoc V N, Minh N V, Huy H A, Hien D T 2006 Phys. Rev. B 74 205312

    [13]

    Lee K S, Yoon D H, Bae S B, Park M R, Kim G H 2002 ETRI J. 24 270

  • [1] 宋莉娜, 吕燕伍. InGaN插入层对AlGaN/GaN界面电子散射的影响.  , 2021, 70(17): 177201. doi: 10.7498/aps.70.20202223
    [2] 张雪冰, 刘乃漳, 姚若河. AlGaN/GaN高电子迁移率晶体管中二维电子气的极化光学声子散射.  , 2020, 69(15): 157303. doi: 10.7498/aps.69.20200250
    [3] 任舰, 苏丽娜, 李文佳. 晶格匹配In0.17Al0.83N/GaN异质结电容散射机制.  , 2018, 67(24): 247202. doi: 10.7498/aps.67.20181050
    [4] 罗旭东, 牛胜利, 左应红. 典型甚低频电磁波对辐射带高能电子的散射损失效应.  , 2015, 64(6): 069401. doi: 10.7498/aps.64.069401
    [5] 胡晓颖, 郭晓霞, 胡文弢, 呼和满都拉, 郑晓霞, 荆丽丽. 旋转方形散射体对三角晶格磁振子晶体带结构的优化.  , 2015, 64(10): 107501. doi: 10.7498/aps.64.107501
    [6] 杨鹏, 吕燕伍, 王鑫波. AlN插入层对AlxGa1-xN/GaN界面电子散射的影响.  , 2015, 64(19): 197303. doi: 10.7498/aps.64.197303
    [7] 鞠生宏, 梁新刚. 带孔硅纳米薄膜热整流及声子散射特性研究.  , 2013, 62(2): 026101. doi: 10.7498/aps.62.026101
    [8] 李明, 张荣, 刘斌, 傅德颐, 赵传阵, 谢自力, 修向前, 郑有炓. AlGaN/GaN量子阱中子带的Rashba自旋劈裂和子带间自旋轨道耦合作用研究.  , 2012, 61(2): 027103. doi: 10.7498/aps.61.027103
    [9] 杨福军, 班士良. 纤锌矿AlGaN/AlN/GaN异质结构中光学声子散射影响的电子迁移率.  , 2012, 61(8): 087201. doi: 10.7498/aps.61.087201
    [10] 王立勇, 曹永军. 散射体排列方式对二维磁振子晶体带隙结构的影响.  , 2011, 60(9): 097501. doi: 10.7498/aps.60.097501
    [11] 顾旭东, 赵正予, 倪彬彬, 王 翔, 邓 峰. 地基高频加热激励ELF/VLF波对辐射带高能电子的准线性散射.  , 2008, 57(10): 6673-6682. doi: 10.7498/aps.57.6673
    [12] 王 坤, 姚淑德, 侯利娜, 丁志博, 袁洪涛, 杜小龙, 薛其坤. 用卢瑟福背散射/沟道技术研究ZnO/Zn0.9Mg0.1O/ZnO异质结的弹性应变.  , 2006, 55(6): 2892-2896. doi: 10.7498/aps.55.2892
    [13] 蔡 力, 韩小云. 二维声子晶体带结构的多散射分析及解耦模式.  , 2006, 55(11): 5866-5871. doi: 10.7498/aps.55.5866
    [14] 郑泽伟, 沈 波, 桂永胜, 仇志军, 唐 宁, 蒋春萍, 张 荣, 施 毅, 郑有炓, 郭少令, 褚君浩. AlxGa1-x N/GaN调制掺杂异质结构的子带性质研究.  , 2004, 53(2): 596-600. doi: 10.7498/aps.53.596
    [15] 刘晓东, 李曙光, 侯蓝田, 王慧田. 含金属散射体的中红外无序介质的光子定域化理论研究.  , 2002, 51(9): 2123-2127. doi: 10.7498/aps.51.2123
    [16] 杨永宏, 邢定钰, 龚昌德. 二维无序电子系统子带间的杂质散射效应.  , 1993, 42(1): 106-113. doi: 10.7498/aps.42.106
    [17] 蒋祺, 龚昌德. 等能谷间杂质散射对无序层状系统电导率的影响.  , 1989, 38(4): 600-606. doi: 10.7498/aps.38.600
    [18] 于宝善, 胡代林, 苏滨丽. 分子间相互作用对联合散射谱带强度的影响.  , 1966, 22(6): 714-718. doi: 10.7498/aps.22.714
    [19] 曹昌祺. 带区近似中的π-π高能散射行为和复l平面的奇异性.  , 1964, 20(7): 596-606. doi: 10.7498/aps.20.596
    [20] 陈时, 戴元本. 高能核子—核子散射的带区近似.  , 1962, 18(6): 321-324. doi: 10.7498/aps.18.321
计量
  • 文章访问数:  6022
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-05
  • 修回日期:  2018-11-17
  • 刊出日期:  2019-01-05

/

返回文章
返回
Baidu
map