搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

InGaN插入层对AlGaN/GaN界面电子散射的影响

宋莉娜 吕燕伍

引用本文:
Citation:

InGaN插入层对AlGaN/GaN界面电子散射的影响

宋莉娜, 吕燕伍

Effect of inserted InGaN layer on the two-dimensional electron gas in AlxGa1–xN/InyGa1–yN/GaN

Song Li-Na, Lü Yan-Wu
PDF
HTML
导出引用
  • 本文研究InGaN作为AlGaN/GaN插入层引起的电子输运性质的变化, 考虑了AlGaN和InGaN势垒层的自发极化与压电极化对AlxGa1–xN/InyGa1–yN/GaN双异质结高电子迁移率晶体管中极化电荷面密度、二维电子气(2DEG)浓度的影响, 理论分析了不同In摩尔组分下, InGaN厚度与界面粗糙度散射、随机偶极散射和极性光学声子散射之间的关系. 计算结果表明: 界面粗糙度散射和随机偶极散射对双异质结AlxGa1–xN/InyGa1–yN/GaN的电子输运性质有重要影响, 极性光学声子散射对其影响最弱; 2DEG浓度、界面粗糙度散射、随机偶极散射和极性光学声子散射的强弱由InGaN势垒层厚度和In摩尔组分共同决定.
    This paper studies the changes in electronic transport properties caused by InGaN as an AlGaN/GaN insertion layer, and considers the effects of the spontaneous polarization and piezoelectric polarization of AlGaN and InGaN barrier layers on the surface density of polarized charge, and the concentration of two-dimensional electron gas (2DEG) in AlxGa1–xN/InyGa1–yN/GaN double heterojunction high-electron-mobility transistor. The InGaN thickness and interface roughness scattering, random dipole scattering and polar optical phonons under different In molar compositions are analyzed. The calculation results show that the interface roughness scattering and random dipole scattering have an important influence on the electron transport properties of the double heterojunction AlxGa1–xN/InyGa1–yN/GaN, and the polar optical phonon scattering has the weakest influence; 2DEG concentration, the strength of interface roughness scattering, random dipole scattering and polar optical phonon scattering are determined by the thickness of the InGaN barrier layer and the molar composition of In. This paper takes 2DEG in the AlxGa1–xN/InyGa1–yN/GaN double heterojunction as the research object, considering the barrier layer of finite thickness, taking into account the spontaneous polarization effect and piezoelectric polarization effect of each layer, and giving AlxGa1–xN/GaN 2DEG characteristics in the InyGa1–yN/GaN double heterostructure, discussing the scattering of 2DEG concentration and interface roughness by changing the In molar composition and the thickness of the InGaN barrier layer under the same Al molar composition and the thickness of the AlGaN barrier layer, Random dipole scattering and polar optical phonon scattering. The results of the present study are of great significance in controlling the 2DEG concentration in the AlxGa1–xN/InyGa1–yN/GaN double heterojunction structure and improving the electron mobility. This paper presents the analytical expression of 2DEG concentration ns in AlxGa1–xN/InyGa1–yN/ GaN double heterostructure. The effects of the thickness of the InGaN insertion layer and the molar composition of indium on the 2DEG concentration, interface roughness scattering, random dipole scattering and total mobility are studied. According to the theoretical calculation results, on condition that the physical properties of the AlGaN barrier layer remain unchanged, choosing the appropriate InGaN barrier layer thickness and In molar composition concentration can better control the 2DEG concentration and carrier mobility. These results are beneficial to widely using the double heterojunction AlxGa1–xN/InyGa1–yN/GaN in actual nitride based semiconductor devices.
      通信作者: 吕燕伍, ywlu@bjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 60976070)资助的课题
      Corresponding author: Lü Yan-Wu, ywlu@bjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 60976070)
    [1]

    Chu R M, Zhou Y G, Zheng Y D, Gu S L, Shen B, Zhang R, Jiang R L, Han P, Shi Y 2003 Appl. Phys. A 77 669Google Scholar

    [2]

    Chu R M, Zhou Y G, Zheng Y D, Han P, Shen B, Gu S L 2001 Appl. Phys. Lett. 79 2270Google Scholar

    [3]

    Arulkumaran S, Ng G I, Ranjan K, Kumar C M M, Foo S C, Ang K S, Vicknesh S, Dolmanan S B, Bhat T, Tripathy S 2015 Jpn. J. Appl. Phys. 54 04DF12Google Scholar

    [4]

    Ambacher O, Smart G, Shealy J R, Weimann N G, Chu K, Murphy M, Schaff W J, Eastman L F 1999 J. Appl. Phys. 85 3222Google Scholar

    [5]

    Yan J D, Wang X L, Wang Q, Qu S, Xiao H L, Peng E C, Kang H, Wang C M, Feng C, Yin H B, Jiang L J, Li B Q, Wang Z G, Hou X 2014 J. Appl. Phys. 116 195Google Scholar

    [6]

    Li H, Liu G, Wei H, Jiao C 2013 Appl. Phys. Lett. 103 232109Google Scholar

    [7]

    Iucolano F, Roccaforte F, Giannazzo F, Raineri V 2007 J. Appl. Phys. 102 113701Google Scholar

    [8]

    Peng J, Liu X, Ji D, Lu Y 2017 Thin Solid Films 623 98Google Scholar

    [9]

    Wang C X, Tsubaki K, Kobayashi N, Makimoto T 2004 Appl. Phys. Lett. 84 2313Google Scholar

    [10]

    Ghosh J, Ganguly S 2018 Jpn. J. Appl. Phys. 57 080305Google Scholar

    [11]

    Chakraborty A, Ghosh S, Mukhopadhyay P, Jana S K, Dinara S M, Bag A, Mahata M K, Kumar R, Das S, Das P 2016 Electron. Mater. Lett. 12 232Google Scholar

    [12]

    Bag A, Majumdar S, Das S, Biswas D 2017 Mater. Design. 133 176Google Scholar

    [13]

    Simin G, Hu X, Tarakji A, Zhang J, Koudymov A, Saygi S, Yang J, Khan A, Shur M, Gaska R 2001 Jpn. J. Appl. Phys. 40 L1142Google Scholar

    [14]

    Maeda N, Saitoh T, Tsubaki K, Nishida T, Kobayashi N 1999 Jpn. J. Appl. Phys. 38 L799Google Scholar

    [15]

    Luan C B, Lin Z J, Lü Y J, Zhao J T, Wang Y, Chen H, Wang Z G 2014 J. Appl. Phys. 116 044507Google Scholar

    [16]

    Liou B T, Lin C Y, Yen S H, Kuo Y K 2005 Opt. Commun. 249 217Google Scholar

    [17]

    NSM archive. http://www.ioffe.ru/SVA/NSM/Semicond. [2021– 04–25]

    [18]

    Tung R T 1991 Appl. Phys. Lett. 58 2821Google Scholar

    [19]

    Goyal N, Fjeldly T 2016 IEEE T. Electron. Dev. 63 881Google Scholar

    [20]

    Shur M 1987 GaAs Devices and Circuits (New York: Plenum) pp520–535.

    [21]

    Liu W F, Luo Y L, Sang Y C, Bian J M, Zhao Y, Liu Y H, Qin F W 2013 Mater. Lett. 95 135Google Scholar

    [22]

    Chen N C, Chang P H, Wang Y N, Peng H C, Lien W C, Shih C F, Chang C A, Wu G M 2005 Appl. Phys. Lett. 87 212111Google Scholar

    [23]

    Zhong H, Liu Z, Lin S, Xu G, Fan Y, Huang Z, Wang J, Ren G, Ke X 2014 Appl. Phys. Lett. 104 202101Google Scholar

    [24]

    Gökden S, Tülek R, Teke A, Leach J H, Fan Q, Xie J, Özgür Ü, Morkoc H, Lisesivdin S B, Özbay E 2010 Semicond. Sci. Tech. 25 045024Google Scholar

    [25]

    Jena D, Gossard A C, Mishra U K 2000 J. Appl. Phys. 88 4734Google Scholar

    [26]

    Pala N, Rumyantsev S, Shur M, Gaska R, Hu X, Yang J, Simin G, Khan M A 2003 Solid. State. Phys. 47 1099Google Scholar

    [27]

    Gaska R, Yang J W, Osinsky A, Chen Q, Han K, Asif M 1998 Appl. Phys. Lett. 72 707Google Scholar

    [28]

    Lanford W, Kumar V, Schwindt R, Kuliev A, Adesida I, Dabiran A M, Wowchak A M, Chow P P, Lee J W 2004 Electron. Lett. 40 771Google Scholar

    [29]

    Liu J, Zhou Y, Zhu J, Lau K M, Chen K J 2006 IEEE Electr. Device. L. 35 671Google Scholar

    [30]

    Khan M, Alim M A, C Gaquière 2021 Microelectron. Eng. 238 111508Google Scholar

    [31]

    Miah M I, Gray E M 2012 J. Phys. Chem. Solids. 73 444Google Scholar

  • 图 1  AlxGa1–xN/InyGa1–yN/GaN异质结结构图

    Fig. 1.  The structure of AlxGa1–xN/InyGa1–yN/GaN heterojunction.

    图 2  AlxGa1–xN/InyGa1–yN/GaN异质结导带剖面示意图

    Fig. 2.  Schematic diagram of conduction band profile of AlxGa1–xN/InyGa1–yN/GaN structure.

    图 3  在不同In摩尔组分下, InGaN势垒层厚度和二维电子气浓度的关系

    Fig. 3.  The relationship between the thickness of InGaN and 2 DEG sheet density under different In mole fraction.

    图 4  在不同In摩尔组分下, InGaN势垒层厚度与界面粗糙度散射迁移率之间的关系

    Fig. 4.  The relationship between the thickness of InGaN and mobility limited by interface roughness scattering under different In mole fraction.

    图 5  在不同In摩尔组分下, InGaN势垒层厚度与随机偶极散射的迁移率之间的关系

    Fig. 5.  The relationship between the thickness of InGaN and mobility limited by random dipole scattering under different In mole fraction.

    图 6  极性光学声子散射迁移率和InGaN势垒层厚度的关系

    Fig. 6.  The relationship between the thickness of InGaN and polar optical phonon scattering.

    图 7  在不同In摩尔组分下, 总迁移率和InGaN势垒层厚度的关系

    Fig. 7.  The relationship between the thickness of InGaN and total mobility under different In mole fraction.

    表 1  AlN, InN, GaN, AlxGa1–xN和InyGa1–yN的各项物理参数(300 K)[17]

    Table 1.  Physical parameters of AlN, InN, GaN, AlxGa1–xN and InyGa1–yN[17].

    参数AlNInNGaNAlxGa1–xNInyGa1–yN
    a/(10–10 m)3.1123.5453.189xPAlN + (1 – x)PGaNyPInN + (1 – y)PGaN
    c/(10–10 m)4.9825.7035.186
    ε/(10–11 F·m–1)7.5313.507.88
    C13/GPa10892103
    C33/GPa373224405
    e31/(C·m–2)–0.6–0.57–0.49
    e33/(C·m–2)1.460.970.73
    PSP/(C·m–2)–0.081–0.032–0.029
    下载: 导出CSV
    Baidu
  • [1]

    Chu R M, Zhou Y G, Zheng Y D, Gu S L, Shen B, Zhang R, Jiang R L, Han P, Shi Y 2003 Appl. Phys. A 77 669Google Scholar

    [2]

    Chu R M, Zhou Y G, Zheng Y D, Han P, Shen B, Gu S L 2001 Appl. Phys. Lett. 79 2270Google Scholar

    [3]

    Arulkumaran S, Ng G I, Ranjan K, Kumar C M M, Foo S C, Ang K S, Vicknesh S, Dolmanan S B, Bhat T, Tripathy S 2015 Jpn. J. Appl. Phys. 54 04DF12Google Scholar

    [4]

    Ambacher O, Smart G, Shealy J R, Weimann N G, Chu K, Murphy M, Schaff W J, Eastman L F 1999 J. Appl. Phys. 85 3222Google Scholar

    [5]

    Yan J D, Wang X L, Wang Q, Qu S, Xiao H L, Peng E C, Kang H, Wang C M, Feng C, Yin H B, Jiang L J, Li B Q, Wang Z G, Hou X 2014 J. Appl. Phys. 116 195Google Scholar

    [6]

    Li H, Liu G, Wei H, Jiao C 2013 Appl. Phys. Lett. 103 232109Google Scholar

    [7]

    Iucolano F, Roccaforte F, Giannazzo F, Raineri V 2007 J. Appl. Phys. 102 113701Google Scholar

    [8]

    Peng J, Liu X, Ji D, Lu Y 2017 Thin Solid Films 623 98Google Scholar

    [9]

    Wang C X, Tsubaki K, Kobayashi N, Makimoto T 2004 Appl. Phys. Lett. 84 2313Google Scholar

    [10]

    Ghosh J, Ganguly S 2018 Jpn. J. Appl. Phys. 57 080305Google Scholar

    [11]

    Chakraborty A, Ghosh S, Mukhopadhyay P, Jana S K, Dinara S M, Bag A, Mahata M K, Kumar R, Das S, Das P 2016 Electron. Mater. Lett. 12 232Google Scholar

    [12]

    Bag A, Majumdar S, Das S, Biswas D 2017 Mater. Design. 133 176Google Scholar

    [13]

    Simin G, Hu X, Tarakji A, Zhang J, Koudymov A, Saygi S, Yang J, Khan A, Shur M, Gaska R 2001 Jpn. J. Appl. Phys. 40 L1142Google Scholar

    [14]

    Maeda N, Saitoh T, Tsubaki K, Nishida T, Kobayashi N 1999 Jpn. J. Appl. Phys. 38 L799Google Scholar

    [15]

    Luan C B, Lin Z J, Lü Y J, Zhao J T, Wang Y, Chen H, Wang Z G 2014 J. Appl. Phys. 116 044507Google Scholar

    [16]

    Liou B T, Lin C Y, Yen S H, Kuo Y K 2005 Opt. Commun. 249 217Google Scholar

    [17]

    NSM archive. http://www.ioffe.ru/SVA/NSM/Semicond. [2021– 04–25]

    [18]

    Tung R T 1991 Appl. Phys. Lett. 58 2821Google Scholar

    [19]

    Goyal N, Fjeldly T 2016 IEEE T. Electron. Dev. 63 881Google Scholar

    [20]

    Shur M 1987 GaAs Devices and Circuits (New York: Plenum) pp520–535.

    [21]

    Liu W F, Luo Y L, Sang Y C, Bian J M, Zhao Y, Liu Y H, Qin F W 2013 Mater. Lett. 95 135Google Scholar

    [22]

    Chen N C, Chang P H, Wang Y N, Peng H C, Lien W C, Shih C F, Chang C A, Wu G M 2005 Appl. Phys. Lett. 87 212111Google Scholar

    [23]

    Zhong H, Liu Z, Lin S, Xu G, Fan Y, Huang Z, Wang J, Ren G, Ke X 2014 Appl. Phys. Lett. 104 202101Google Scholar

    [24]

    Gökden S, Tülek R, Teke A, Leach J H, Fan Q, Xie J, Özgür Ü, Morkoc H, Lisesivdin S B, Özbay E 2010 Semicond. Sci. Tech. 25 045024Google Scholar

    [25]

    Jena D, Gossard A C, Mishra U K 2000 J. Appl. Phys. 88 4734Google Scholar

    [26]

    Pala N, Rumyantsev S, Shur M, Gaska R, Hu X, Yang J, Simin G, Khan M A 2003 Solid. State. Phys. 47 1099Google Scholar

    [27]

    Gaska R, Yang J W, Osinsky A, Chen Q, Han K, Asif M 1998 Appl. Phys. Lett. 72 707Google Scholar

    [28]

    Lanford W, Kumar V, Schwindt R, Kuliev A, Adesida I, Dabiran A M, Wowchak A M, Chow P P, Lee J W 2004 Electron. Lett. 40 771Google Scholar

    [29]

    Liu J, Zhou Y, Zhu J, Lau K M, Chen K J 2006 IEEE Electr. Device. L. 35 671Google Scholar

    [30]

    Khan M, Alim M A, C Gaquière 2021 Microelectron. Eng. 238 111508Google Scholar

    [31]

    Miah M I, Gray E M 2012 J. Phys. Chem. Solids. 73 444Google Scholar

  • [1] 张雪冰, 刘乃漳, 姚若河. AlGaN/GaN高电子迁移率晶体管中二维电子气的极化光学声子散射.  , 2020, 69(15): 157303. doi: 10.7498/aps.69.20200250
    [2] 宋永锋, 李雄兵, 史亦韦, 倪培君. 表面粗糙度对固体内部超声背散射的影响.  , 2016, 65(21): 214301. doi: 10.7498/aps.65.214301
    [3] 杨鹏, 吕燕伍, 王鑫波. AlN插入层对AlxGa1-xN/GaN界面电子散射的影响.  , 2015, 64(19): 197303. doi: 10.7498/aps.64.197303
    [4] 吴庚坤, 姬光荣, 姬婷婷, 任红霞. 基于文氏改进谱的二维粗糙海面模型及其电磁散射研究.  , 2014, 63(13): 134203. doi: 10.7498/aps.63.134203
    [5] 杨福军, 班士良. 纤锌矿AlGaN/AlN/GaN异质结构中光学声子散射影响的电子迁移率.  , 2012, 61(8): 087201. doi: 10.7498/aps.61.087201
    [6] 丁锐, 金亚秋. 随机Gauss粗糙面上三维导体目标散射差场的随机泛函解析计算方法.  , 2011, 60(12): 124102. doi: 10.7498/aps.60.124102
    [7] 秦三团, 郭立新, 代少玉, 龚书喜. 二维随机粗糙面上导体目标复合瞬态散射的混合算法.  , 2011, 60(7): 074217. doi: 10.7498/aps.60.074217
    [8] 任新成, 郭立新. 具有二维fBm特征的分层介质粗糙面电磁散射的特性研究.  , 2009, 58(3): 1627-1634. doi: 10.7498/aps.58.1627
    [9] 叶红霞, 金亚秋. 三维随机粗糙面上导体目标散射的解析-数值混合算法.  , 2008, 57(2): 839-846. doi: 10.7498/aps.57.839
    [10] 郭立新, 王 蕊, 王运华, 吴振森. 二维粗糙海面散射回波多普勒谱频移及展宽特征.  , 2008, 57(6): 3464-3472. doi: 10.7498/aps.57.3464
    [11] 蔡 力, 韩小云. 二维声子晶体带结构的多散射分析及解耦模式.  , 2006, 55(11): 5866-5871. doi: 10.7498/aps.55.5866
    [12] 侯海虹, 孙喜莲, 申雁鸣, 邵建达, 范正修, 易 葵. 电子束蒸发氧化锆薄膜的粗糙度和光散射特性.  , 2006, 55(6): 3124-3127. doi: 10.7498/aps.55.3124
    [13] 郭立新, 王运华, 吴振森. 二维导体微粗糙面与其上方金属平板的复合电磁散射研究.  , 2005, 54(11): 5130-5138. doi: 10.7498/aps.54.5130
    [14] 郭立新, 吴振森. 二维分数布朗运动(FBM)随机粗糙面电磁散射的基尔霍夫近似.  , 2001, 50(1): 42-47. doi: 10.7498/aps.50.42
    [15] 郭立新, 吴振森. 二维导体粗糙面电磁散射的分形特征研究.  , 2000, 49(6): 1064-1069. doi: 10.7498/aps.49.1064
    [16] 曾令祉, 王荣平, 蒋毅坚, 朱镛, 刘玉龙. BaTiO3和Ce:BaTiO3晶体极性声子和电磁激元的喇曼散射研究.  , 1996, 45(6): 1059-1067. doi: 10.7498/aps.45.1059
    [17] 杨永宏, 邢定钰, 龚昌德. 二维无序电子系统子带间的杂质散射效应.  , 1993, 42(1): 106-113. doi: 10.7498/aps.42.106
    [18] 金亚秋. 随机粗糙面上后向散射的增强.  , 1989, 38(10): 1611-1620. doi: 10.7498/aps.38.1611
    [19] 刘福绥, 范希庆, 刘砚章, 王淮生, 阮英超. 电子多声子作用对散射时间的效应.  , 1989, 38(1): 154-158. doi: 10.7498/aps.38.154
    [20] 雷啸霖, 丁秦生. 非线性电子输运中声学和光学声子的联合散射效应.  , 1985, 34(8): 983-991. doi: 10.7498/aps.34.983
计量
  • 文章访问数:  4448
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-29
  • 修回日期:  2021-04-17
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-09-05

/

返回文章
返回
Baidu
map