搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅衬底氮化镓基LED薄膜转移至柔性黏结层基板后其应力及发光性能变化的研究

黄斌斌 熊传兵 汤英文 张超宇 黄基锋 王光绪 刘军林 江风益

引用本文:
Citation:

硅衬底氮化镓基LED薄膜转移至柔性黏结层基板后其应力及发光性能变化的研究

黄斌斌, 熊传兵, 汤英文, 张超宇, 黄基锋, 王光绪, 刘军林, 江风益

Changes of stress and luminescence properties in GaN-based LED films before and after transferring the films to a flexible layer on a submount from the silicon epitaxial substrate

Huang Bin-Bin, Xiong Chuan-Bing, Tang Ying-Wen, Zhang Chao-Yu, Huang Ji-Feng, Wang Guang-Xu, Liu Jun-Lin, Jiang Feng-Yi
PDF
导出引用
  • 本文将硅(Si)衬底上外延生长的氮化镓(GaN)基发光二极管(LED)薄膜转移至含有柔性黏结层的基板上, 获得了不受衬底和支撑基板束缚的LED薄膜. 利用高分辨率X射线衍射仪(HRXRD)研究了薄膜转移前后的应力变化, 同时对其光致发光(PL)光谱的特性进行了研究. 结果表明: 硅衬底GaN基LED薄膜转移至柔性基板后, GaN受到的应力会由转移前巨大的张应力变为转移后微小的压应力, InGaN/GaN量子阱受到的压应力则增大; 尽管LED薄膜室温无损转移至柔性基板其InGaN阱层的In组分不会改变, 然而按照HRXRD倒易空间图谱通用计算方法会得出平均铟组发生了变化; GaN基LED薄膜从外延片转移至柔性基板时其PL谱会发生明显红移.
    Due to the lack of GaN substrates, hetero-epitaxial growth of GaN thin films is usually carried out on a foreign substrate. There are three kinds of substrate for GaN: sapphire, silicon carbide, and silicon; the sapphire substrate is the chief one, currently. Due to the availability of large scale and low cost of Si substrates, in recent years, extensive research has been devoted to the development of gallium nitride (GaN) optoelectronic devices on silicon substrates. Because of the large lattice mismatch and thermal-expansion cofficient difference between Si and GaN, it is difficult to grow thick enough crack-free GaN LED film on Si substrates. The two main kinds of methods for overcoming the crack problem are using the patterned Si substate and the thick AlGaN buffer layer. Although the two techniques could solve the problem of crack by cooling after growth, they will lead to an increase in tensile stress for GaN on Si. When making vertical-structured LED devices by transferring the GaN-based LED thin films from Si substrate to a new submount, this tensile stress will be partially released; but few researches have been made about the stress change before and after the transfer of the film, although the stress in GaN is an important factor that alters the energy band structure and may influence the vibrational properties. In this paper, we grow the crack-free GaN-based LED films on patterned Si(111), then light-emitting diode (LED) thin films are successfully transferred from the original Si (111) substrate to the submount with a flexible layer, and then the LED films without the influence of the submount and substrate are fabricated. In the following experiments, the strain-stress variation of the LED film is determined by using nondestructive high resolution X-ray diffraction (HRXRD) in detail, and the variation of photoluminescence (PL) properties of the film is studied too. Results obtained are as follows: 1) When the LED film is transferred to the flexible submount, the huge tensile stress will turn into compressive stress, and the latter in the InGaN layers will increase. 2) The In concentration in the (InGaN/GaN) MQW (multi-quantum well) systems can be evaluated with the help of reciprocal space maps (RSM) around the symmetric (0002) and asymmetric (1015) Bragg reflections. The In concentration in (InGaN/GaN) MQW will reduce when the GaN-based LED film is transferred to the flexible submount. 3) The PL spectra of the LED films will obviously appear red shift, after they are transferred to the flexible submount.
      通信作者: 熊传兵, chuanbingxiong@126.com
    • 基金项目: 国家自然科学基金(批准号: 51072076, 11364034, 61334001, 21406076, 61040060), 国家高技术研究发展计划(批准号: 2011AA03A101, 2012AA041002), 国家科技支撑计划(批准号: 2011BAE32B01)资助的课题.
      Corresponding author: Xiong Chuan-Bing, chuanbingxiong@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51072076, 11364034, 61334001, 21406076, 61040060), the National High Technology Research and Development Program of China (Grant Nos. 2011AA03A101, 2012AA041002), and the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2011BAE32B01).
    [1]

    McCluskey M D, Van de Walle C G, Master C P, Romano L T, Johnson N M 1998 Appl. Phys. Lett. 72 2725

    [2]

    Taniyasu Y, Kasu M, Makimoto T 2006 Nature 441 325

    [3]

    Pereira S, Correia M R, Monteiro T, Pereira E, Alves E, Sequeira A D, Franco N 2001 Appl. Phys. Lett. 78 2137

    [4]

    Kong H S, James I, Edmond J 2014 Phys. Status Solidi C 11 621

    [5]

    Okuno K, Oshio T, Shibata N, Honda Y, Yamaguchi M, Amano H 2014 Phys. Status Solidi C 11 722

    [6]

    Tang J J, Liang T, Shi W L, Zhang Q Q, Wang Y, Liu J, Xiong J J 2011 Appl. Surf. Sci. 257 8846

    [7]

    Perlin P, Mattos L, Shapiro N A, Kruger J, Wong W S, Sands T, Cheung N W, Weber E R 1999 J. Appl. Phys. 85 2385

    [8]

    Li Y L, Huang Y R, Lai Y H 2007 Appl. Phys. Lett. 91 181113

    [9]

    Huang B B, Xiong C B, Zhang C Y, Huang J F, Wang G X, Tang Y W, Quan Z J, Xu L Q, Zhang M, Wang L, Fang W Q, Liu J L, Jiang F Y 2014 Acta Phys. Sin. 63 217806 (in Chinese) [黄斌斌, 熊传兵, 张超宇, 黄基锋, 王光绪, 汤英文, 全知觉, 徐龙权, 张萌, 王立, 方文卿, 刘军林, 江风益 2014 63 217806]

    [10]

    Park J, Goto T, Yao T, Lee S, Cho M 2013 J. Phys. D: Appl. Phys. 46 155104

    [11]

    Zhao D G, Xu S J, Xie M H, Tong S Y, Hui Y 2003 Appl. Phys. Lett. 83 677

    [12]

    Wong W S, Sands T, Cheung N W, Kneissl M, Bour D P, Mei P, Romano L T, Johnson N M 1999 Appl. Phys. Lett. 75 1360

    [13]

    Stach E A, Kelsch M, Nelson E, Wong W S, Sands T, Cheung N W 2000 Appl. Phys. Lett. 77 1819

    [14]

    Mo C L, Fang W Q, Pu Y, Liu H C, Jiang F 2005 J. Cryst. Growth 285 312

    [15]

    Xiong C B, Jiang F Y, Fang W Q, Wang L, Mo C L 2008 Acta Phys. Sin. 57 3176 (in Chinese) [熊传兵, 江风益, 方文卿, 王立, 莫春兰 2008 57 3176]

    [16]

    Xiong Y J, Zhang M, Xiong C B, Xiao Z H, Wang G X, Wang Y M, Jiang F Y 2010 Chin. J. Lumin. 31 531 (in Chinese) [熊贻婧, 张萌, 熊传兵, 肖宗湖, 王光绪, 汪延明, 江风益 2010 发光学报 31 531]

    [17]

    Moram M A, Vickers M E 2009 Rep. Prog. Phys. 72 036502

    [18]

    Paszkowicz W 1999 Powder Diffr. 14 258

    [19]

    Ishikawa H, Zhao G Y, Nakada N, Egawa T, Jimbo T, Umeno M 1999 Jpn. J. Appl. Phys. 38 L492

    [20]

    Bläsing J, Reiher A, Dadgar A, Diez A, Krost A 2002 Appl. Phys. Lett. 81 2722

    [21]

    Wu M F, Zhou S Q, Yao S D, Zhao Q, Vantomme A 2004 J. Vac. Sci. Technol. B 22 921

    [22]

    Roesener T, Klinger V, Weuffen C, Lackner D, Dimroth F 2013 J. Cryst. Growth 368 21

    [23]

    Dobrovolskas D, Vaitkevičius A, Mickevičius J, Tuna Ö, Giesen C, Heuken M, Tamulaitis G 2013 J. Appl. Phys. 114 163516

    [24]

    Pereira S, Correia M R, Pereira E, O'Donnell K P, Alves E, Sequeira A D, Franco N, Watson I M, Deatcher C J 2002 Appl. Phys. Lett. 80 3913

    [25]

    Detchprohm T, Hiramatsu K, Itoh K, Akasaki I 1992 Jpn. J. Appl. Phys. 31 L1454

    [26]

    Wright A F 1997 J. Appl. Phys. 82 2833

    [27]

    Wu M, Zhang B S, Chen J, Liu J P, Shen X M, Zhao D G, Zhang J C, Wang J F, Li N, Jin R Q, Zhu J J, Yang H 2004 J. Cryst. Growth 260 331

    [28]

    Tawfik W Z, Song J, Lee J J, Ha J S, Ryu S W, Choi H S, Ryu B, Lee J K 2013 Appl. Surf. Sci. 283 727

  • [1]

    McCluskey M D, Van de Walle C G, Master C P, Romano L T, Johnson N M 1998 Appl. Phys. Lett. 72 2725

    [2]

    Taniyasu Y, Kasu M, Makimoto T 2006 Nature 441 325

    [3]

    Pereira S, Correia M R, Monteiro T, Pereira E, Alves E, Sequeira A D, Franco N 2001 Appl. Phys. Lett. 78 2137

    [4]

    Kong H S, James I, Edmond J 2014 Phys. Status Solidi C 11 621

    [5]

    Okuno K, Oshio T, Shibata N, Honda Y, Yamaguchi M, Amano H 2014 Phys. Status Solidi C 11 722

    [6]

    Tang J J, Liang T, Shi W L, Zhang Q Q, Wang Y, Liu J, Xiong J J 2011 Appl. Surf. Sci. 257 8846

    [7]

    Perlin P, Mattos L, Shapiro N A, Kruger J, Wong W S, Sands T, Cheung N W, Weber E R 1999 J. Appl. Phys. 85 2385

    [8]

    Li Y L, Huang Y R, Lai Y H 2007 Appl. Phys. Lett. 91 181113

    [9]

    Huang B B, Xiong C B, Zhang C Y, Huang J F, Wang G X, Tang Y W, Quan Z J, Xu L Q, Zhang M, Wang L, Fang W Q, Liu J L, Jiang F Y 2014 Acta Phys. Sin. 63 217806 (in Chinese) [黄斌斌, 熊传兵, 张超宇, 黄基锋, 王光绪, 汤英文, 全知觉, 徐龙权, 张萌, 王立, 方文卿, 刘军林, 江风益 2014 63 217806]

    [10]

    Park J, Goto T, Yao T, Lee S, Cho M 2013 J. Phys. D: Appl. Phys. 46 155104

    [11]

    Zhao D G, Xu S J, Xie M H, Tong S Y, Hui Y 2003 Appl. Phys. Lett. 83 677

    [12]

    Wong W S, Sands T, Cheung N W, Kneissl M, Bour D P, Mei P, Romano L T, Johnson N M 1999 Appl. Phys. Lett. 75 1360

    [13]

    Stach E A, Kelsch M, Nelson E, Wong W S, Sands T, Cheung N W 2000 Appl. Phys. Lett. 77 1819

    [14]

    Mo C L, Fang W Q, Pu Y, Liu H C, Jiang F 2005 J. Cryst. Growth 285 312

    [15]

    Xiong C B, Jiang F Y, Fang W Q, Wang L, Mo C L 2008 Acta Phys. Sin. 57 3176 (in Chinese) [熊传兵, 江风益, 方文卿, 王立, 莫春兰 2008 57 3176]

    [16]

    Xiong Y J, Zhang M, Xiong C B, Xiao Z H, Wang G X, Wang Y M, Jiang F Y 2010 Chin. J. Lumin. 31 531 (in Chinese) [熊贻婧, 张萌, 熊传兵, 肖宗湖, 王光绪, 汪延明, 江风益 2010 发光学报 31 531]

    [17]

    Moram M A, Vickers M E 2009 Rep. Prog. Phys. 72 036502

    [18]

    Paszkowicz W 1999 Powder Diffr. 14 258

    [19]

    Ishikawa H, Zhao G Y, Nakada N, Egawa T, Jimbo T, Umeno M 1999 Jpn. J. Appl. Phys. 38 L492

    [20]

    Bläsing J, Reiher A, Dadgar A, Diez A, Krost A 2002 Appl. Phys. Lett. 81 2722

    [21]

    Wu M F, Zhou S Q, Yao S D, Zhao Q, Vantomme A 2004 J. Vac. Sci. Technol. B 22 921

    [22]

    Roesener T, Klinger V, Weuffen C, Lackner D, Dimroth F 2013 J. Cryst. Growth 368 21

    [23]

    Dobrovolskas D, Vaitkevičius A, Mickevičius J, Tuna Ö, Giesen C, Heuken M, Tamulaitis G 2013 J. Appl. Phys. 114 163516

    [24]

    Pereira S, Correia M R, Pereira E, O'Donnell K P, Alves E, Sequeira A D, Franco N, Watson I M, Deatcher C J 2002 Appl. Phys. Lett. 80 3913

    [25]

    Detchprohm T, Hiramatsu K, Itoh K, Akasaki I 1992 Jpn. J. Appl. Phys. 31 L1454

    [26]

    Wright A F 1997 J. Appl. Phys. 82 2833

    [27]

    Wu M, Zhang B S, Chen J, Liu J P, Shen X M, Zhao D G, Zhang J C, Wang J F, Li N, Jin R Q, Zhu J J, Yang H 2004 J. Cryst. Growth 260 331

    [28]

    Tawfik W Z, Song J, Lee J J, Ha J S, Ryu S W, Choi H S, Ryu B, Lee J K 2013 Appl. Surf. Sci. 283 727

  • [1] 刘庆彬, 蔚翠, 郭建超, 马孟宇, 何泽召, 周闯杰, 高学栋, 余浩, 冯志红. 多晶金刚石对硅基氮化镓材料的影响.  , 2023, 72(9): 098104. doi: 10.7498/aps.72.20221942
    [2] 雷振帅, 孙小伟, 刘子江, 宋婷, 田俊红. 氮化镓相图预测及其高压熔化特性研究.  , 2022, 71(19): 198102. doi: 10.7498/aps.71.20220510
    [3] 苑营阔, 郭伟玲, 杜在发, 钱峰松, 柳鸣, 王乐, 徐晨, 严群, 孙捷. 石墨烯晶体管优化制备工艺在单片集成驱动氮化镓微型发光二极管中的应用.  , 2021, 70(19): 197801. doi: 10.7498/aps.70.20210122
    [4] 谢飞, 臧航, 刘方, 何欢, 廖文龙, 黄煜. 氮化镓在不同中子辐照环境下的位移损伤模拟研究.  , 2020, 69(19): 192401. doi: 10.7498/aps.69.20200064
    [5] 时强, 李路平, 张勇辉, 张紫辉, 毕文刚. GaN/InxGa1-xN型最后一个量子势垒对发光二极管内量子效率的影响.  , 2017, 66(15): 158501. doi: 10.7498/aps.66.158501
    [6] 封波, 邓彪, 刘乐功, 李增成, 冯美鑫, 赵汉民, 孙钱. 等离子体表面处理对硅衬底GaN基蓝光发光二极管内置n型欧姆接触的影响.  , 2017, 66(4): 047801. doi: 10.7498/aps.66.047801
    [7] 毛清华, 刘军林, 全知觉, 吴小明, 张萌, 江风益. p型层结构与掺杂对GaInN发光二极管正向电压温度特性的影响.  , 2015, 64(10): 107801. doi: 10.7498/aps.64.107801
    [8] 张超宇, 熊传兵, 汤英文, 黄斌斌, 黄基锋, 王光绪, 刘军林, 江风益. 图形硅衬底GaN基发光二极管薄膜去除衬底及AlN缓冲层后单个图形内微区发光及 应力变化的研究.  , 2015, 64(18): 187801. doi: 10.7498/aps.64.187801
    [9] 王健, 谢自力, 张荣, 张韵, 刘斌, 陈鹏, 韩平. InN的光致发光特性研究.  , 2013, 62(11): 117802. doi: 10.7498/aps.62.117802
    [10] 刘木林, 闵秋应, 叶志清. 硅衬底InGaN/GaN基蓝光发光二极管droop效应的研究.  , 2012, 61(17): 178503. doi: 10.7498/aps.61.178503
    [11] 程赛, 吕惠民, 石振海, 崔静雅. 碳泡沫衬底上氮化铝纳米线的生长及其光致发光特性研究.  , 2012, 61(12): 126201. doi: 10.7498/aps.61.126201
    [12] 王光绪, 陶喜霞, 熊传兵, 刘军林, 封飞飞, 张萌, 江风益. 牺牲Ni退火对硅衬底GaN基发光二极管p型接触影响的研究.  , 2011, 60(7): 078503. doi: 10.7498/aps.60.078503
    [13] 李水清, 汪莱, 韩彦军, 罗毅, 邓和清, 丘建生, 张洁. 氮化镓基发光二极管结构中粗化 p型氮化镓层的新型生长方法.  , 2011, 60(9): 098107. doi: 10.7498/aps.60.098107
    [14] 邢艳辉, 韩军, 邓军, 李建军, 徐晨, 沈光地. p型GaN低温粗化提高发光二极管特性.  , 2010, 59(2): 1233-1236. doi: 10.7498/aps.59.1233
    [15] 李素梅, 宋淑梅, 吕英波, 王爱芳, 吴爱玲, 郑卫民. 量子限制受主的光致发光研究.  , 2009, 58(7): 4936-4940. doi: 10.7498/aps.58.4936
    [16] 李炳乾, 郑同场, 夏正浩. GaN基蓝光发光二极管正向电压温度特性研究.  , 2009, 58(10): 7189-7193. doi: 10.7498/aps.58.7189
    [17] 沈光地, 张剑铭, 邹德恕, 徐 晨, 顾晓玲. 大功率GaN基发光二极管的电流扩展效应及电极结构优化研究.  , 2008, 57(1): 472-476. doi: 10.7498/aps.57.472
    [18] 于 威, 李亚超, 丁文革, 张江勇, 杨彦斌, 傅广生. 氮化硅薄膜中纳米非晶硅颗粒的键合结构及光致发光.  , 2008, 57(6): 3661-3665. doi: 10.7498/aps.57.3661
    [19] 张小东, 林德旭, 李公平, 尤 伟, 张利民, 张 宇, 刘正民. 离子注入n型GaN光致发光谱中宽黄光发射带研究.  , 2006, 55(10): 5487-5493. doi: 10.7498/aps.55.5487
    [20] 刘乃鑫, 王怀兵, 刘建平, 牛南辉, 韩 军, 沈光地. p型氮化镓的低温生长及发光二极管器件的研究.  , 2006, 55(3): 1424-1429. doi: 10.7498/aps.55.1424
计量
  • 文章访问数:  7290
  • PDF下载量:  258
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-14
  • 修回日期:  2015-05-05
  • 刊出日期:  2015-09-05

/

返回文章
返回
Baidu
map