搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属粒子阵列共振的偏振特性

殷澄 许田 陈秉岩 韩庆邦

引用本文:
Citation:

金属粒子阵列共振的偏振特性

殷澄, 许田, 陈秉岩, 韩庆邦

Polarization characteristics of the lattice resonance of metal nanoparticle array

Yin Cheng, Xu Tian, Chen Bing-Yan, Han Qing-Bang
PDF
导出引用
  • 当金属纳米粒子形成规则分布且阵列周期与单粒子的共振波长近似匹配时, 会形成一种特殊的阵列共振, 这种共振比单粒子的局域表面等离子体共振具有更窄的共振线宽和更高的共振强度. 基于修正的长波近似方法, 讨论了矩形阵列的消光截面与阵列因子和单粒子的极化率之间的关系; 并详细研究了在不同偏振的入射光照射下, 阵列因子随着电偶极子方向的改变而产生的变化, 以及这一效应对阵列共振和消光截面所产生的影响. 结果表明, 大型的方阵是偏振无关的; 在矩形阵列中, 沿着阵列两个轴向的相邻粒子之间的耦合形成了阵列因子的两个极值, 并且分别对应了散射截面的最小值.
    A special lattice resonance can be observed when the array period of a metal nanoparticle array matches the resonant wavelength of the localized plasmon resonance of an isolated particle. The lattice resonance is sharper and its linewidth is narrower than the localized plasmonics resonance of a single particle. According to the modified long wavelength approximation approach, we discuss the extinction cross-section of the rectangular array in terms of the array factor and the particle polarizability. In this paper we emphasize the polarization characteristics of the regular array when the laser is incident vertically under different polarizations, and we also discuss in detail the variation of the array factor with the direction of electric dipole, and its influence on extinction cross section of the particle array. The square lattice with big size is polarization independent, while the rectangular lattice is polarization dependent. The coupling between the neighboring particle dipoles along the two lattice vectors of the regular array gives rise to a maximum value of its array factor, which determines a minimum value of the extinction cross section. When the incident light is polarized along one of the lattice vectors, the dipole coupling along that direction can be ignored since the particles are located in the far field of its neighboring particles, and the relevant peak in the array factor disappears.
    • 基金项目: 国家自然科学基金(批准号: 11404092)和江苏省自然科学基金(批准号: SBK2014043338)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11404092) and the Natural Science Foundation of Jiangsu Province, China (Grant No. SBK2014043338).
    [1]

    Ekmel O 2006 Science 311 189

    [2]

    Stefan A M, Harry A A 2005 J. Appl. Phys. 98 011101

    [3]

    Katherine A W, Richard V D 2007 Annu. Rev. Phys. Chem. 58 267

    [4]

    Xu D, Wang X Y, Huang Y G, Ouyang S L, He H L, He H 2015 Chin. Phys. B 24 024205

    [5]

    Huang Q, Zhang X D, Zhang H, Xiong S Z, Geng W D, Geng X H, Zhao Y 2010 Chin. Phys. B 19 047304

    [6]

    Guo Y N, Xue W R, Zhang W M 2009 Acta Phys. Sin. 58 4168 (in Chinese) [郭亚楠, 薛文瑞, 张文梅 2009 58 4168]

    [7]

    Stefan A M, Mark L B, Pieter G K, Sheffer M, Ari A G R, Harry A A 2001 Adv. Mater. 13 1501

    [8]

    Huang Q, Xiong S Z, Zhao Y, Zhang X D 2012 Acta Phys. Sin. 61 157801 (in Chinese) [黄茜, 熊绍珍, 赵颖, 张晓丹 2012 61 157801]

    [9]

    Huang Q, Cao L R, Sun J, Zhang X D, Geng W D, Xiong S Z, Zhao Y, Wang J 2009 Acta Phys. Sin. 58 1980 (in Chinese) [黄茜, 曹丽冉, 孙建, 张晓丹, 耿卫东, 熊绍珍, 赵颖, 王京 2009 58 1980]

    [10]

    Eleonora P, Ulrich J K 2011 Anal. Chim. Acta 706 8

    [11]

    Craig F B, Donald R H 1998 Absorption and Scattering of Light by Small Particles (New York: John Wiley & Sons) p136

    [12]

    Alexander M 2009 JOSA B 26 517

    [13]

    García de Abajo F J 2007 Rev. Mod. Phys. 79 1267

    [14]

    Kravets V G, Schedin F, Grigorenko A N 2008 Phys. Rev. Lett. 22 087403

    [15]

    Rodriguez S, Schaafsma M, Berrier A, Rivas J G 2012 Physica B 407 4081

    [16]

    Väkeväinen A I, Moerland R J, Rekola H T, Eskelinen A P, Martikainen J P, Kim D H, Törmä P 2014 Nano Lett. 14 1721

    [17]

    Palik E D 1985 Handbook of Optical Constants of Solids (New York: Academic Press) p275

    [18]

    Hulst H C 1981 Light Scattering by Small Particles (New York: Dover Publications, Inc) p4

  • [1]

    Ekmel O 2006 Science 311 189

    [2]

    Stefan A M, Harry A A 2005 J. Appl. Phys. 98 011101

    [3]

    Katherine A W, Richard V D 2007 Annu. Rev. Phys. Chem. 58 267

    [4]

    Xu D, Wang X Y, Huang Y G, Ouyang S L, He H L, He H 2015 Chin. Phys. B 24 024205

    [5]

    Huang Q, Zhang X D, Zhang H, Xiong S Z, Geng W D, Geng X H, Zhao Y 2010 Chin. Phys. B 19 047304

    [6]

    Guo Y N, Xue W R, Zhang W M 2009 Acta Phys. Sin. 58 4168 (in Chinese) [郭亚楠, 薛文瑞, 张文梅 2009 58 4168]

    [7]

    Stefan A M, Mark L B, Pieter G K, Sheffer M, Ari A G R, Harry A A 2001 Adv. Mater. 13 1501

    [8]

    Huang Q, Xiong S Z, Zhao Y, Zhang X D 2012 Acta Phys. Sin. 61 157801 (in Chinese) [黄茜, 熊绍珍, 赵颖, 张晓丹 2012 61 157801]

    [9]

    Huang Q, Cao L R, Sun J, Zhang X D, Geng W D, Xiong S Z, Zhao Y, Wang J 2009 Acta Phys. Sin. 58 1980 (in Chinese) [黄茜, 曹丽冉, 孙建, 张晓丹, 耿卫东, 熊绍珍, 赵颖, 王京 2009 58 1980]

    [10]

    Eleonora P, Ulrich J K 2011 Anal. Chim. Acta 706 8

    [11]

    Craig F B, Donald R H 1998 Absorption and Scattering of Light by Small Particles (New York: John Wiley & Sons) p136

    [12]

    Alexander M 2009 JOSA B 26 517

    [13]

    García de Abajo F J 2007 Rev. Mod. Phys. 79 1267

    [14]

    Kravets V G, Schedin F, Grigorenko A N 2008 Phys. Rev. Lett. 22 087403

    [15]

    Rodriguez S, Schaafsma M, Berrier A, Rivas J G 2012 Physica B 407 4081

    [16]

    Väkeväinen A I, Moerland R J, Rekola H T, Eskelinen A P, Martikainen J P, Kim D H, Törmä P 2014 Nano Lett. 14 1721

    [17]

    Palik E D 1985 Handbook of Optical Constants of Solids (New York: Academic Press) p275

    [18]

    Hulst H C 1981 Light Scattering by Small Particles (New York: Dover Publications, Inc) p4

  • [1] 李长亮, 陈智辉, 冯光, 王晓伟, 杨毅彪, 费宏明, 孙非, 刘一超. 基于波导-同心环形谐振腔模型的纳米流体荧光颗粒微位移检测.  , 2022, 71(20): 204702. doi: 10.7498/aps.71.20220771
    [2] 李亮亮, 王晓方. 高能带电粒子束对陡峭密度梯度区照相的散射效应解析模型.  , 2022, 71(11): 115201. doi: 10.7498/aps.70.20212269
    [3] 李亮亮, 王晓方. 高能带电粒子束对陡峭密度梯度区照相的散射效应解析模型及散射调制现象的特征.  , 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212269
    [4] 殷澄, 陆成杰, 笪婧, 张瑞耕, 阚雪芬, 韩庆邦, 许田. 金属纳米颗粒二聚体阵列的消光截面.  , 2021, 70(2): 024201. doi: 10.7498/aps.70.20200964
    [5] 瞿立建. 浸没于带电纳米粒子溶液中的聚电解质刷: 强拉伸理论.  , 2020, 69(14): 148201. doi: 10.7498/aps.69.20200432
    [6] 王亚明, 刘永利, 张林. Ti纳米粒子熔化与凝结的原子尺度模拟.  , 2019, 68(16): 166402. doi: 10.7498/aps.68.20190228
    [7] 付成花. 微纳粒子光学散射分析.  , 2017, 66(9): 097301. doi: 10.7498/aps.66.097301
    [8] 钱泽宇, 张林. 熔融TiAl合金纳米粒子在TiAl(001)基底表面凝结过程中微观结构演变的原子尺度模拟.  , 2015, 64(24): 243103. doi: 10.7498/aps.64.243103
    [9] 汪志刚, 黄娆, 文玉华. Pt-Au核-壳结构纳米粒子热稳定性的分子动力学研究.  , 2013, 62(12): 126101. doi: 10.7498/aps.62.126101
    [10] 汪志刚, 黄娆, 文玉华. Au-Pd共晶纳米粒子熔化行为的分子动力学研究.  , 2012, 61(16): 166102. doi: 10.7498/aps.61.166102
    [11] 汪志刚, 吴亮, 张杨, 文玉华. 面心立方铁纳米粒子的相变与并合行为的分子动力学研究.  , 2011, 60(9): 096105. doi: 10.7498/aps.60.096105
    [12] 程木田. 经典光场相干控制金属纳米线表面等离子体传输.  , 2011, 60(11): 117301. doi: 10.7498/aps.60.117301
    [13] 王红霞, 周战荣, 张清华, 马进, 刘代志. 纳米碳纤维红外消光数值计算.  , 2010, 59(9): 6111-6117. doi: 10.7498/aps.59.6111
    [14] 田惠忱, 刘丽, 文玉华. 立方铂纳米粒子的形状变化与熔化特性的分子动力学研究.  , 2009, 58(6): 4080-4084. doi: 10.7498/aps.58.4080
    [15] 顾春元, 狄勤丰, 施利毅, 吴 非, 王文昌, 余祖斌. 纳米粒子构建表面的超疏水性能实验研究.  , 2008, 57(5): 3071-3076. doi: 10.7498/aps.57.3071
    [16] 白 璐, 吴振森, 陈 辉, 郭立新. 高斯波束入射下串粒子的散射问题.  , 2005, 54(5): 2025-2029. doi: 10.7498/aps.54.2025
    [17] 段芳莉, 雒建斌, 温诗铸. 纳米粒子与单晶硅表面碰撞的反弹机理研究.  , 2005, 54(6): 2832-2837. doi: 10.7498/aps.54.2832
    [18] 许北雪, 吴锦雷, 侯士敏, 张西尧, 刘惟敏, 薛增泉, 吴全德. 镧与真空沉积银纳米粒子的金属间化合.  , 2002, 51(7): 1649-1653. doi: 10.7498/aps.51.1649
    [19] 许北雪, 吴锦雷, 邵庆益, 张兆祥, 刘惟敏, 薛增泉, 吴全德. 稀土镧对薄膜中银纳米粒子的细化作用.  , 2002, 51(5): 1103-1107. doi: 10.7498/aps.51.1103
    [20] 许北雪, 吴锦雷, 刘惟敏, 杨海, 邵庆益, 刘盛, 薛增泉, 吴全德. 稀土对金属纳米粒子-介质复合薄膜(Ag-BaO)光电发射性能的增强.  , 2001, 50(5): 977-980. doi: 10.7498/aps.50.977
计量
  • 文章访问数:  6903
  • PDF下载量:  245
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-28
  • 修回日期:  2015-03-09
  • 刊出日期:  2015-08-05

/

返回文章
返回
Baidu
map