-
超短超强激光与物质相互作用产生的高能带电粒子束在放射照相中具有重要应用. 当几十到几百MeV动能的高能带电粒子束穿过薄膜靶时, 能量损失可忽略, 主要发生小角散射. 由于该散射效应, 高能带电粒子束对具有横向陡峭密度梯度区的靶照相, 透射束在探测面上的通量密度分布中会出现靶密度梯度区散射产生的调制现象, 有可能反过来诊断出陡峭密度梯度区信息. 目前主要采用蒙特卡罗方法对带电粒子束发生散射和产生调制现象进行理论分析, 不仅计算时间长, 计算的参数范围也有限. 本文发展了一个解析模型, 用来处理带电粒子束在靶中传输的散射效应以及在探测面上产生的调制现象, 能够快速给出结果, 而且与蒙特卡罗方法数值计算的结果符合很好. 使用本文解析模型, 对带电粒子束照相密度梯度靶产生散射调制现象的特征进行了分析. 提出了一个与照相条件有关的无量纲参量, 其取值范围决定了散射调制信号特征以及诊断陡峭密度梯度区的可能性.Energetic charged-particle beams produced from ultrashort ultra-intense laser plasma interactions play a vital role in charged-particle radiography. When such an energetic beam penetrates through a foil target, its energy loss is negligible, and the main physics process is small-angle scattering. Owing to this scattering effect, charged-particle radiography of a target with a transversely distributed steep density gradient region will produce a modulation structure in the fluence distribution on the detection plane, which could be used to diagnose the steep density gradient region. In the past, the theoretical work on the scattering effect and the resulting modulation structure was done with Monte-Carlo simulations, which cost a lot of computing time and the studied parameter range was limited. In the present work, an analytical model is developed to deal with the scattering effect inside the target and the modulation structure on the detection plane in radiography, which can quickly present the results that coincide with Monte-Carlo simulations very well. By using this analytical model, the characteristics of modulation structures are analyzed. A dimensionless characteristic parameter related to radiography conditions is put forward, and its range determines different modulation structures and also the probability of diagnosing a steep density gradient region with a width
$\lesssim $ 2 μm.-
Keywords:
- scattering /
- radiography /
- charged-particle beam
[1] Zohuri B 2017 Inertial Confinement Fusion Driven Thermonuclear Energy (Cham: Springer International Publishing AG)
[2] Lindl J 1995 Phys. Plasmas 2 3933Google Scholar
[3] Chen B, Yang Z, Wei M, Pu Y, Hu X, Chen T, Liu S, Yan J, Huang T, Jiang S, Ding Y 2014 Phys. Plasmas. 21 122705Google Scholar
[4] 陆中伟, 王晓方 2019 68 035202Google Scholar
Lu Z W, Wang X F 2019 Acta Phys. Sin. 68 035202Google Scholar
[5] Marshall F J, Ivancic S T, Mileham C, Nilson P M, Ruby J J, Stoeckl C, Scheiner B S, Schmitt M J 2021 Rev. Sci. Instrum. 92 033701Google Scholar
[6] Higginson A, Gray R J, King M, et al. 2018 Nat. Commun. 9 724Google Scholar
[7] Gonsalves A J, Nakamura K, Daniels J, et al. 2019 Phys. Rev. Lett. 122 084801Google Scholar
[8] Li C K, Séguin F H, Frenje J A, et al. 2006 Phys. Rev. Lett. 97 135003Google Scholar
[9] Du B, Wang X F 2018 AIP Adv. 8 125328Google Scholar
[10] Mackinnon A J, Patel P K, Borghesi M, et al. 2006 Phys. Rev. Lett. 97 045001Google Scholar
[11] Cobble J A, Johnson R P, Cowan T E, Renard-Le Galloudec N, Allen M 2002 J. Appl. Phys. 92 1775Google Scholar
[12] 温树槐, 丁永坤 2012 激光惯性约束聚变诊断学 (北京: 国防工业出版社)
Wen S H, Ding Y K 2012 Laser Inertial Confinement Fusion Diagnostics (Beijing: National Defense Industry Press) (in Chinese)
[13] 滕建, 洪伟, 赵宗清, 巫顺超, 秦孝尊, 何颖玲, 谷渝秋, 丁永坤 2009 58 1635Google Scholar
Teng J, Hong W, Zhao Z Q, Wu S C, Qin X Z, He Y L, Gu Y Q, Ding Y K 2009 Acta Phys. Sin. 58 1635Google Scholar
[14] 肖渊, 王晓方, 滕建, 陈晓虎, 陈媛, 洪伟 2012 61 234102Google Scholar
Xiao Y, Wang X F, Teng J, Chen X H, Chen Y, Hong W 2012 Acta Phys. Sin. 61 234102Google Scholar
[15] 陈媛, 王晓方, 邵光超 2015 64 154101Google Scholar
Chen Y, Wang X F, Shao G C 2015 Acta Phys. Sin. 64 154101Google Scholar
[16] Bethe H A 1953 Phys. Rev. 89 1256Google Scholar
[17] Highland V L 1975 Nucl. Instrum. Methods 129 497Google Scholar
[18] Shao G, Wang X 2016 Phys. Plasmas 23 092703Google Scholar
[19] Zhang Y, Wang X 2020 Plasma Phys. Control. Fusion 62 095023Google Scholar
[20] Wu X J, Wang X F, Chen X H 2016 Chin. Phys. Lett. 33 065201Google Scholar
[21] Ferrari A, Sala P R, Fassò A, Ranft J, Siegen U 2005 FLUKA: A Multi-particle Transport Code No. SLAC-R-773 Stanford Linear Accelerator Center (SLAC)
[22] Jackson J D 2005 Classical Electrodynamics (3rd Ed.) (Beijing: Higher Education Press)
[23] 汪晓莲, 李澄, 邵明, 陈宏芳 2009 粒子探测技术 (合肥: 中国科学技术大学出版社)
Wang X L, Li C, Shao M, Chen H F 2009 The Technique of Particle Detection (Hefei: USTC Press) (in Chinese)
-
图 9 调制信号特征量和ω随照相参数的变化 (a) 点源发散束情况下改变梯度区宽度; (b) 改变点源与靶的间距; (c) 点源发散束和平行束条件下改变靶与探测面距离; (d) 无量纲的调制信号特征量随ω的变化关系
Fig. 9. Dependence of the characteristic quantities and ω on the change of: (a) Density gradient width by using a point-source beam for radiography; (b) point source-to-target distance; (c) target-to-detection plane distance by using a parallel beam or a point-source beam for radiography, respectively; (d) the relation of the dimensionless characteristic quantities to ω.
-
[1] Zohuri B 2017 Inertial Confinement Fusion Driven Thermonuclear Energy (Cham: Springer International Publishing AG)
[2] Lindl J 1995 Phys. Plasmas 2 3933Google Scholar
[3] Chen B, Yang Z, Wei M, Pu Y, Hu X, Chen T, Liu S, Yan J, Huang T, Jiang S, Ding Y 2014 Phys. Plasmas. 21 122705Google Scholar
[4] 陆中伟, 王晓方 2019 68 035202Google Scholar
Lu Z W, Wang X F 2019 Acta Phys. Sin. 68 035202Google Scholar
[5] Marshall F J, Ivancic S T, Mileham C, Nilson P M, Ruby J J, Stoeckl C, Scheiner B S, Schmitt M J 2021 Rev. Sci. Instrum. 92 033701Google Scholar
[6] Higginson A, Gray R J, King M, et al. 2018 Nat. Commun. 9 724Google Scholar
[7] Gonsalves A J, Nakamura K, Daniels J, et al. 2019 Phys. Rev. Lett. 122 084801Google Scholar
[8] Li C K, Séguin F H, Frenje J A, et al. 2006 Phys. Rev. Lett. 97 135003Google Scholar
[9] Du B, Wang X F 2018 AIP Adv. 8 125328Google Scholar
[10] Mackinnon A J, Patel P K, Borghesi M, et al. 2006 Phys. Rev. Lett. 97 045001Google Scholar
[11] Cobble J A, Johnson R P, Cowan T E, Renard-Le Galloudec N, Allen M 2002 J. Appl. Phys. 92 1775Google Scholar
[12] 温树槐, 丁永坤 2012 激光惯性约束聚变诊断学 (北京: 国防工业出版社)
Wen S H, Ding Y K 2012 Laser Inertial Confinement Fusion Diagnostics (Beijing: National Defense Industry Press) (in Chinese)
[13] 滕建, 洪伟, 赵宗清, 巫顺超, 秦孝尊, 何颖玲, 谷渝秋, 丁永坤 2009 58 1635Google Scholar
Teng J, Hong W, Zhao Z Q, Wu S C, Qin X Z, He Y L, Gu Y Q, Ding Y K 2009 Acta Phys. Sin. 58 1635Google Scholar
[14] 肖渊, 王晓方, 滕建, 陈晓虎, 陈媛, 洪伟 2012 61 234102Google Scholar
Xiao Y, Wang X F, Teng J, Chen X H, Chen Y, Hong W 2012 Acta Phys. Sin. 61 234102Google Scholar
[15] 陈媛, 王晓方, 邵光超 2015 64 154101Google Scholar
Chen Y, Wang X F, Shao G C 2015 Acta Phys. Sin. 64 154101Google Scholar
[16] Bethe H A 1953 Phys. Rev. 89 1256Google Scholar
[17] Highland V L 1975 Nucl. Instrum. Methods 129 497Google Scholar
[18] Shao G, Wang X 2016 Phys. Plasmas 23 092703Google Scholar
[19] Zhang Y, Wang X 2020 Plasma Phys. Control. Fusion 62 095023Google Scholar
[20] Wu X J, Wang X F, Chen X H 2016 Chin. Phys. Lett. 33 065201Google Scholar
[21] Ferrari A, Sala P R, Fassò A, Ranft J, Siegen U 2005 FLUKA: A Multi-particle Transport Code No. SLAC-R-773 Stanford Linear Accelerator Center (SLAC)
[22] Jackson J D 2005 Classical Electrodynamics (3rd Ed.) (Beijing: Higher Education Press)
[23] 汪晓莲, 李澄, 邵明, 陈宏芳 2009 粒子探测技术 (合肥: 中国科学技术大学出版社)
Wang X L, Li C, Shao M, Chen H F 2009 The Technique of Particle Detection (Hefei: USTC Press) (in Chinese)
计量
- 文章访问数: 3659
- PDF下载量: 73
- 被引次数: 0