搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于里德堡原子的电场测量

黄巍 梁振涛 杜炎雄 颜辉 朱诗亮

引用本文:
Citation:

基于里德堡原子的电场测量

黄巍, 梁振涛, 杜炎雄, 颜辉, 朱诗亮

Rydberg-atom-based electrometry

Huang Wei, Liang Zhen-Tao, Du Yan-Xiong, Yan Hui, Zhu Shi-Liang
PDF
导出引用
  • 里德堡原子具有大的极化率、低的场电离阈值和大的电偶极矩,对外部电磁场十分敏感,可以用来测量电场强度特别是微波电场的强度. 利用里德堡原子的量子干涉效应(电磁诱导透明和Autler-Townes效应)测量微波电场强度的灵敏度远高于传统采用偶极天线测量微波电场的灵敏度. 此外,里德堡原子电场计 可以溯源到标准物理量,不需要额外校准; 采用玻璃探头,对待测电场干扰少; 灵敏度也不依赖于探头的物理尺寸. 同时,该电场计还可以实现对微波电场的偏振方向的测量, 实现亚波长和近场区域电场成像与测量. 通过选择不同的里德堡能级,可以实现1-500 GHz超宽频段范围内微波电场强度的测量. 主要综述基于里德堡原子的电场精密测量研究, 详细介绍了里德堡原子电场计的原理与实验进展, 并简单讨论了其发展方向.
    Atom in Rydberg state has large polarizability, large electric dipole and low ionization threshold field. It is very sensitive to electric field, therefore it can be used to measure the amplitude of electric field, especially the microwave electric field. The new developed scheme is based on quantum interference effects (electromagnetically induced transparency and Autler-Townes splitting) in Rydberg atoms. Instead of the direct amplitude measurement, this method tests the Rabi frequency value of the transmission spectrum which is determined by the microwave electric field strength and the corresponding atom nature. The minimum measured strengths of microwave electric fields are far below the standard values obtained by traditional antenna methods. Compared with the traditional methods, this new scheme has several advantages, such as self-calibration, non-perturbation to the measured field and independence of the probe length. Besides, this scheme can also be used to measure the polarization direction of microwave electric field and realize sub-wavelength imaging. Through adjusting the wavelength of coupling laser, a broadband 1-500 GHz microwave electric field measurement can be achieved. This new scheme is benefitial to conducting the continue electric field measurement and the miniaturization of the test equipment. In this paper, the researches about using Rydberg atom to measure electric field with high precision are reviewed. The basic theory and experimental techniques are introduced. Finally, we discuss a promising method of using Rydberg atom interferometer to detect the accumulated phase in the process of interaction between electric field and Rydberg atoms. This method converts amplitude measurement into phase test, which may improve the precision and sensitivity.
    • 基金项目: 国家自然科学基金(批准号: 11474107, 11125417)、广东省自然科学杰出青年基金(批准号: 2014A030306012)、广东省高等学校优秀青年教师培养计划 (批准号: Yq2013050)、广州市珠江科技新星(批准号: 2014010)、教育部长江学者创新团队(批准号: IRT1243)、广东省普通高校青年创新人才项目、华南师范大学青年教师科研培育基金(批准号: 14KJ04)和华南师范大学研究生科研创新基金(批准号: 2014ssxm12)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11474107, 11125417), the Natural Science Fund for Distinguished Young Scholars of Guangdong Province, China (Grant No. 2014A030306012), the Project for Outstanding Young Teachers in Higher Education of Guangdong Province, China (Grant No. Yq2013050), the Zhujiang Nova Program of Guangdong Province, China (Grant No. 2014010), the Program for Changjiang Scholars and Innovative Research Team in Universities of Ministry of Education of China (Grant No. IRT1243), the Program for Young Innovation Scholars in Universities of Guangdong Province, China, the Science Research Foundation for Young Teachers in South China Normal University (Grant No. 14KJ04), and the Science Research Foundation for Graduate Student of South China Normal University (Grant No. 2014ssxm12).
    [1]

    Hall J L 2006 Rev. Mod. Phys. 78 1279

    [2]

    Savukov I M, Seltzer S J, Romalis M V, Sauer K L 2005 Phys. Rev. Lett. 95 063004

    [3]

    Balabas M V, Karaulanov T, Ledbetter M P, Budker D 2010 Phys. Rev. Lett. 105 070801

    [4]

    Wasilewski W, Jensen K, Krauter H, Renema J J, Balabas M V, Polzik E S 2010 Phys. Rev. Lett. 104 133601

    [5]

    Koschorreck M, Napolitano M, Dubost B, Mitchell M W 2010 Phys. Rev. Lett. 104 093602

    [6]

    Wang P F, Ju C Y, Shi F Z, Du J F

    [7]

    Camparo J C 1998 Phys. Rev. Lett. 80 222

    [8]

    Swan-Wood T, Coffer J G, Camparo J C 2001 IEEE Trans. Inst. Meas. 50 1229

    [9]

    Holloway C L, Gordon J A, Jefferts S, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 IEEE Trans. Antenn. Propag. 62 6169

    [10]

    Sedlacek J A, Schwettmann A, Kubler H, Low R, Pfau T, Shaffer J P 2012 Nature Phys. 8 819

    [11]

    Gordon J A, Holloway C L, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 105 024104

    [12]

    Gallagher T F 1994 Rydberg Atoms (Cambridge: Cambridge University Press)

    [13]

    Osterwalder A, Merkt F 1999 Phys. Rev. Lett. 82 1831

    [14]

    Carter J D, Cherry O, Martin J D D 2012 Phys. Rev. A 86 053401

    [15]

    Abel R P, Carr C, Krohn U, Adams C S 2011 Phys. Rev. A 84 023408

    [16]

    Bason M G, Tanasittikosol M, Sargsyan A, Mohapatra A K, Sarkisyan D, Potvliege R M, Adams C S 2010 New J. Phys. 12 065015

    [17]

    Li B, Liu H P 2013 Chin. Phys. B 22 013203

    [18]

    Yang H F, Gao W, Cheng H, Liu X J, Liu H P 2013 Chin. Phys. B 22 013202

    [19]

    Li H Y, Yue D G, Liang Z Q, Yi C H, Chen J Z 2013 Acta Phys. Sin. 62 203401 (in Chinese) [李红云, 岳大光, 梁志强, 伊长红, 陈建中 2013 62 203401]

    [20]

    Wang Y, Zhang H, Chen J, Wang L M, Zhang L J, Li C Y, Zhao J M, Jia S T 2013 Acta Phys. Sin. 62 093201 (in Chinese) [王勇, 张好, 陈杰, 王丽梅, 张临杰, 李昌勇, 赵健明, 贾锁堂 2013 62 093201]

    [21]

    Jiang L J, Zhang X Z, Jia G R, Zhang Y H, Xia L H 2013 Acta Phys. Sin. 62 013101 (in Chinese) [蒋丽娟, 张现周, 贾光瑞, 张永慧, 夏立华 2013 62 013101]

    [22]

    Wang L M, Zhang H, Li C Y, Zhao J M, Jia S T 2013 Acta Phys. Sin. 62 013201 (in Chinese) [王丽梅, 张好, 李昌勇, 赵健明, 贾锁堂 2013 62 013201]

    [23]

    Mohapatra A K, Jackson T R, Adams C S 2007 Phys. Rev. Lett. 98 113003

    [24]

    Mauger S, Millen J, Jones M P A 2007 J. Phys. B: At. Mol. Opt. Phys. 40 F319

    [25]

    Weatherill K J, Pritchard J D, Abel R P, Bason M G, Mohapatra A K, Adams C S 2008 J. Phys. B: At. Mol. Opt. Phys. 41 201002

    [26]

    Autler S H, Townes C H 1955 Phys. Rev. 100 703

    [27]

    Zhang H, Zhang L, Wang L, Bao S, Zhao J, Jia S 2014 Phys. Rev. A 90 043849

    [28]

    Tishchenko V A, Tokatly V I, Lukyanov V I 2003 Meas. Tech. 46 76

    [29]

    Kanda M, Orr R D 1988 NBS Technical Note 1319

    [30]

    Kanda M 1993 IEEE Trans. Antennas Propag. 41 1349

    [31]

    Kanda M 1994 IEEE Trans. Electromagn. Compat. 36 261

    [32]

    Sedlacek J A, Schwettmann A, Kubler H, Shaffer J P 2013 Phys. Rev. Lett. 111 063001

    [33]

    Holloway C L, Gordon J A, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 104 244102

    [34]

    Epple G, Kleinbach K S, Euser T G, Joly N Y, Pfau T, Russell St P J, Low R 2014 Nature Commun. 5 4132

    [35]

    Dolde F, Fedder H, Doherty M W, Nöauer T, Rempp F, Balasubramanian G, Wolf T, Reinhard F, Hollenberg L C L, Jelezko F and Wrachtrup J 2011 Nature Phys. 7 459

    [36]

    Muhammad R, Hoogerland M, Jamil Y 2013 Sci. China: Phys. Mech. Astron. 56 2134

    [37]

    Sun R H, Ye M Y, Lin X M 2013 Sci. China: Phys. Mech. Astron. 56 1755

    [38]

    Feng G, Xu G, Long G L 2013 Phys. Rev. Lett. 110 190501

    [39]

    Bergmann K, Theuer H, Shore B W 1998 Rev. Mod. Phys. 70 1003

    [40]

    Klein J, Beil F, Halfmann T 2007 Phys. Rev. Lett. 99 113003

    [41]

    Du Y X, Liang Z T, Huang W, Yan H, Zhu S L 2014 Phys. Rev. A 90 023821

    [42]

    Berry M V 2009 J. Phys. A: Math. Theor. 42 365303

    [43]

    Chen X, Lizuain I, Ruschhaupt A, Guéry-Odelin G, Muga J G 2010 Phys. Rev. Lett. 105 123003

    [44]

    Bason M G, Viteau M, Malossi N, Huillery P, Arimondo E, Ciampini D, Fazio R, Giovannetti V, Mannella R, Morsch O

    [45]

    Zhang J F, Shim J H, Niemeyer I, Taniguchi T, Teraji T, Abe H, Onoda S, Yamamoto T, Ohshima T, Isoya J, Suter D 2013 Phys. Rev. Lett. 110 240501

    [46]

    Zanardi P, Rasetti M 1999 Phys. Lett. A 264 94

    [47]

    Duan L M, Cirac J I, Zoller P 2001 Science 292 1695

    [48]

    Zhu S L, Wang Z D 2002 Phys. Rev. Lett. 89 097902

    [49]

    Zhu S L, Wang Z D 2003 Phys. Rev. Lett. 91 187902

    [50]

    Zhu S L, Wang Z D, Zanardi P 2005 Phys. Rev. Lett. 94 100502

    [51]

    Abdumalikov Jr A A, Fink J M, Juliusson K, Pechal M, Berger S, Wallraff A, Filipp S 2013 Nature 496 482

    [52]

    Arroyo-Camejo S, Lazariev A, Hell S W, Balasubramanian G 2014 Nature Commun. 5 4870

    [53]

    Zu C, Wang W B, He L, Zhang W G, Dai C Y, Wang F, Duan L M 2014 Nature 514 72

    [54]

    Tan X, Zhang D W, Zhang Z, Yu Y, Han S, Zhu S L 2014 Phys. Rev. Lett. 112 027001

  • [1]

    Hall J L 2006 Rev. Mod. Phys. 78 1279

    [2]

    Savukov I M, Seltzer S J, Romalis M V, Sauer K L 2005 Phys. Rev. Lett. 95 063004

    [3]

    Balabas M V, Karaulanov T, Ledbetter M P, Budker D 2010 Phys. Rev. Lett. 105 070801

    [4]

    Wasilewski W, Jensen K, Krauter H, Renema J J, Balabas M V, Polzik E S 2010 Phys. Rev. Lett. 104 133601

    [5]

    Koschorreck M, Napolitano M, Dubost B, Mitchell M W 2010 Phys. Rev. Lett. 104 093602

    [6]

    Wang P F, Ju C Y, Shi F Z, Du J F

    [7]

    Camparo J C 1998 Phys. Rev. Lett. 80 222

    [8]

    Swan-Wood T, Coffer J G, Camparo J C 2001 IEEE Trans. Inst. Meas. 50 1229

    [9]

    Holloway C L, Gordon J A, Jefferts S, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 IEEE Trans. Antenn. Propag. 62 6169

    [10]

    Sedlacek J A, Schwettmann A, Kubler H, Low R, Pfau T, Shaffer J P 2012 Nature Phys. 8 819

    [11]

    Gordon J A, Holloway C L, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 105 024104

    [12]

    Gallagher T F 1994 Rydberg Atoms (Cambridge: Cambridge University Press)

    [13]

    Osterwalder A, Merkt F 1999 Phys. Rev. Lett. 82 1831

    [14]

    Carter J D, Cherry O, Martin J D D 2012 Phys. Rev. A 86 053401

    [15]

    Abel R P, Carr C, Krohn U, Adams C S 2011 Phys. Rev. A 84 023408

    [16]

    Bason M G, Tanasittikosol M, Sargsyan A, Mohapatra A K, Sarkisyan D, Potvliege R M, Adams C S 2010 New J. Phys. 12 065015

    [17]

    Li B, Liu H P 2013 Chin. Phys. B 22 013203

    [18]

    Yang H F, Gao W, Cheng H, Liu X J, Liu H P 2013 Chin. Phys. B 22 013202

    [19]

    Li H Y, Yue D G, Liang Z Q, Yi C H, Chen J Z 2013 Acta Phys. Sin. 62 203401 (in Chinese) [李红云, 岳大光, 梁志强, 伊长红, 陈建中 2013 62 203401]

    [20]

    Wang Y, Zhang H, Chen J, Wang L M, Zhang L J, Li C Y, Zhao J M, Jia S T 2013 Acta Phys. Sin. 62 093201 (in Chinese) [王勇, 张好, 陈杰, 王丽梅, 张临杰, 李昌勇, 赵健明, 贾锁堂 2013 62 093201]

    [21]

    Jiang L J, Zhang X Z, Jia G R, Zhang Y H, Xia L H 2013 Acta Phys. Sin. 62 013101 (in Chinese) [蒋丽娟, 张现周, 贾光瑞, 张永慧, 夏立华 2013 62 013101]

    [22]

    Wang L M, Zhang H, Li C Y, Zhao J M, Jia S T 2013 Acta Phys. Sin. 62 013201 (in Chinese) [王丽梅, 张好, 李昌勇, 赵健明, 贾锁堂 2013 62 013201]

    [23]

    Mohapatra A K, Jackson T R, Adams C S 2007 Phys. Rev. Lett. 98 113003

    [24]

    Mauger S, Millen J, Jones M P A 2007 J. Phys. B: At. Mol. Opt. Phys. 40 F319

    [25]

    Weatherill K J, Pritchard J D, Abel R P, Bason M G, Mohapatra A K, Adams C S 2008 J. Phys. B: At. Mol. Opt. Phys. 41 201002

    [26]

    Autler S H, Townes C H 1955 Phys. Rev. 100 703

    [27]

    Zhang H, Zhang L, Wang L, Bao S, Zhao J, Jia S 2014 Phys. Rev. A 90 043849

    [28]

    Tishchenko V A, Tokatly V I, Lukyanov V I 2003 Meas. Tech. 46 76

    [29]

    Kanda M, Orr R D 1988 NBS Technical Note 1319

    [30]

    Kanda M 1993 IEEE Trans. Antennas Propag. 41 1349

    [31]

    Kanda M 1994 IEEE Trans. Electromagn. Compat. 36 261

    [32]

    Sedlacek J A, Schwettmann A, Kubler H, Shaffer J P 2013 Phys. Rev. Lett. 111 063001

    [33]

    Holloway C L, Gordon J A, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 104 244102

    [34]

    Epple G, Kleinbach K S, Euser T G, Joly N Y, Pfau T, Russell St P J, Low R 2014 Nature Commun. 5 4132

    [35]

    Dolde F, Fedder H, Doherty M W, Nöauer T, Rempp F, Balasubramanian G, Wolf T, Reinhard F, Hollenberg L C L, Jelezko F and Wrachtrup J 2011 Nature Phys. 7 459

    [36]

    Muhammad R, Hoogerland M, Jamil Y 2013 Sci. China: Phys. Mech. Astron. 56 2134

    [37]

    Sun R H, Ye M Y, Lin X M 2013 Sci. China: Phys. Mech. Astron. 56 1755

    [38]

    Feng G, Xu G, Long G L 2013 Phys. Rev. Lett. 110 190501

    [39]

    Bergmann K, Theuer H, Shore B W 1998 Rev. Mod. Phys. 70 1003

    [40]

    Klein J, Beil F, Halfmann T 2007 Phys. Rev. Lett. 99 113003

    [41]

    Du Y X, Liang Z T, Huang W, Yan H, Zhu S L 2014 Phys. Rev. A 90 023821

    [42]

    Berry M V 2009 J. Phys. A: Math. Theor. 42 365303

    [43]

    Chen X, Lizuain I, Ruschhaupt A, Guéry-Odelin G, Muga J G 2010 Phys. Rev. Lett. 105 123003

    [44]

    Bason M G, Viteau M, Malossi N, Huillery P, Arimondo E, Ciampini D, Fazio R, Giovannetti V, Mannella R, Morsch O

    [45]

    Zhang J F, Shim J H, Niemeyer I, Taniguchi T, Teraji T, Abe H, Onoda S, Yamamoto T, Ohshima T, Isoya J, Suter D 2013 Phys. Rev. Lett. 110 240501

    [46]

    Zanardi P, Rasetti M 1999 Phys. Lett. A 264 94

    [47]

    Duan L M, Cirac J I, Zoller P 2001 Science 292 1695

    [48]

    Zhu S L, Wang Z D 2002 Phys. Rev. Lett. 89 097902

    [49]

    Zhu S L, Wang Z D 2003 Phys. Rev. Lett. 91 187902

    [50]

    Zhu S L, Wang Z D, Zanardi P 2005 Phys. Rev. Lett. 94 100502

    [51]

    Abdumalikov Jr A A, Fink J M, Juliusson K, Pechal M, Berger S, Wallraff A, Filipp S 2013 Nature 496 482

    [52]

    Arroyo-Camejo S, Lazariev A, Hell S W, Balasubramanian G 2014 Nature Commun. 5 4870

    [53]

    Zu C, Wang W B, He L, Zhang W G, Dai C Y, Wang F, Duan L M 2014 Nature 514 72

    [54]

    Tan X, Zhang D W, Zhang Z, Yu Y, Han S, Zhu S L 2014 Phys. Rev. Lett. 112 027001

  • [1] 吴逢川, 安强, 姚佳伟, 付云起. 里德堡原子超外差接收链路中的内禀增益系数研究.  , 2023, 72(4): 047401. doi: 10.7498/aps.72.20222091
    [2] 周飞, 贾凤东, 刘修彬, 张剑, 谢锋, 钟志萍. 基于冷里德堡原子电磁感应透明的微波电场测量.  , 2023, 72(4): 045204. doi: 10.7498/aps.72.20222059
    [3] 白文杰, 严冬, 韩海燕, 华硕, 谷开慧. 三体里德堡超级原子的关联动力学研究.  , 2022, 71(1): 014202. doi: 10.7498/aps.71.20211284
    [4] 张跃斌, 马成举, 张垚, 金嘉升, 鲍士仟, 李咪, 李东明. 基于非对称结构全介质超材料的类电磁诱导透明效应研究.  , 2021, 70(19): 194201. doi: 10.7498/aps.70.20210070
    [5] 赵嘉栋, 张好, 杨文广, 赵婧华, 景明勇, 张临杰. 基于里德伯原子电磁诱导透明效应的光脉冲减速.  , 2021, 70(10): 103201. doi: 10.7498/aps.70.20210102
    [6] 褚培新, 张玉斌, 陈俊学. 开口狭缝调制的耦合微腔中表面等离激元诱导透明特性.  , 2020, 69(13): 134205. doi: 10.7498/aps.69.20200369
    [7] 王越, 冷雁冰, 王丽, 董连和, 刘顺瑞, 王君, 孙艳军. 基于石墨烯振幅可调的宽带类电磁诱导透明超材料设计.  , 2018, 67(9): 097801. doi: 10.7498/aps.67.20180114
    [8] 贾玥, 陈肖含, 张好, 张临杰, 肖连团, 贾锁堂. Rydberg原子的电磁诱导透明光谱的噪声转移特性.  , 2018, 67(21): 213201. doi: 10.7498/aps.67.20181168
    [9] 宁仁霞, 鲍婕, 焦铮. 基于石墨烯超表面的宽带电磁诱导透明研究.  , 2017, 66(10): 100202. doi: 10.7498/aps.66.100202
    [10] 杨光, 王杰, 王军民. 采用高信噪比电磁诱导透明谱测定85Rb原子5D5/2态的超精细相互作用常数.  , 2017, 66(10): 103201. doi: 10.7498/aps.66.103201
    [11] 董慧杰, 王新宇, 李昌勇, 贾锁堂. 镓原子的Stark能级结构.  , 2015, 64(9): 093201. doi: 10.7498/aps.64.093201
    [12] 杜英杰, 谢小涛, 杨战营, 白晋涛. 电磁诱导透明系统中的暗孤子.  , 2015, 64(6): 064202. doi: 10.7498/aps.64.064202
    [13] 刘瑞, 於亚飞, 张智明. 利用冷原子系综制备窄线宽三光子频率纠缠态.  , 2014, 63(14): 144203. doi: 10.7498/aps.63.144203
    [14] 李晓莉, 尚雅轩, 孙江. 射频驱动下电磁诱导透明窗口的分裂和增益的出现.  , 2013, 62(6): 064202. doi: 10.7498/aps.62.064202
    [15] 边成玲, 朱江, 陆佳雯, 闫甲璐, 陈丽清, 王增斌, 区泽宇, 张卫平. 基于电磁诱导透明的原子自旋波读出效率实验研究.  , 2013, 62(17): 174207. doi: 10.7498/aps.62.174207
    [16] 吕纯海, 谭磊, 谭文婷. 压缩真空中的电磁诱导透明.  , 2011, 60(2): 024204. doi: 10.7498/aps.60.024204
    [17] 李晓莉, 张连水, 杨宝柱, 杨丽君. 闭合Λ型4能级系统中的电磁诱导透明和电磁诱导吸收.  , 2010, 59(10): 7008-7014. doi: 10.7498/aps.59.7008
    [18] 张连水, 李晓莉, 王 健, 杨丽君, 冯晓敏, 李晓苇, 傅广生. 光学-射频双光子耦合作用下的电磁诱导透明和电磁诱导吸收.  , 2008, 57(8): 4921-4926. doi: 10.7498/aps.57.4921
    [19] 杨丽君, 张连水, 李晓莉, 李晓苇, 郭庆林, 韩 理, 傅广生. 多窗口可调谐电磁诱导透明研究.  , 2006, 55(10): 5206-5210. doi: 10.7498/aps.55.5206
    [20] 王 丽, 宋海珍. 四能级原子系统中的电磁诱导吸收.  , 2006, 55(8): 4145-4149. doi: 10.7498/aps.55.4145
计量
  • 文章访问数:  12312
  • PDF下载量:  1116
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-11
  • 修回日期:  2015-05-12
  • 刊出日期:  2015-08-05

/

返回文章
返回
Baidu
map