-
利用多量子阱结构的非线性半导体光放大器(SOA)构建的太赫兹光非对称解复用器(TOAD), 实验实现了一个开关能量低至25 fJ, 线性度高达0.99的全光采样门. 详细分析了采样脉冲功率和非对称偏移量分别对采样窗口形状、宽度和幅度的影响, 并研究了不同采样窗口宽度下TOAD的开关能量及线性度的变化规律.
-
关键词:
- 光采样 /
- 半导体光放大器 /
- 太赫兹光非对称解复用器 /
- 光通信
We demonstrate experimentally a low switching energy and high-linearity all-optical sampler based on terahertz optical asymmetric demultiplexer (TOAD) composed of a nonlinear semiconductor optical amplifier (SOA) with a multiple quantum well structure. Effects of the sampling pulse power and asymmetric offset of SOA on the shape, width and amplitude of sampling windows are analyzed in detail respectively. It is found that the sampling pulse power has no effect on both the shape and the width of sampling windows, but has a significant effect on the window amplitude. Meanwhile there exists an optimal power which maximizes the sampled output and determines the switching energy of TOAD. The asymmetric offset of SOA from the center position in the loop determines the width of sampling windows and has great influences on both the shape and the amplitude of the sampling window. The sampling windows with different widths have approximately the same rise edge due to the fast response of SOA for the sampling pulse. However, the normalized amplitude of sampling windows firstly increases sharply with the increase of the asymmetry, then gradually flattens out, and tends to be stable in the end. In addition, the switching energy and linearity of TOAD are studied. The switching energy is as low as 25 fJ, and the linearity is as high as 0.99. Moreover, at different window widths, the switching energy of TOAD remains the same and the sampling windows have a very good linearity. However, the sensitivity of a TOAD sampler with different width is different: the wider the sampling window, the higher the sensitivity and the larger the corresponding dynamic range.-
Keywords:
- optical sampling /
- semiconductor optical amplifier /
- terahertz optical asymmetric demultiplexer /
- optical communication
[1] Weber H G, Ludwig R, Ferber S, Schmidt-Langhorst C, Kroh M, Marembert V, Boerner C, Schubert C 2006 J. Lightwave Technol. 24 4616
[2] Duguay M A, Hansen J W 1968 Appl. Phys. Lett. 13 178
[3] Takara H, Kawanishi S, Yokoo A, Tomaru S, Kitoh T, Saruwatari M 1996 Electron. Lett. 32 2256
[4] Nogiwa S, Kawaguchi Y, Ohta H, Endo Y 2000 Electron. Lett. 36 1727
[5] Andrekson P A 1991 Electron. Lett. 27 1440
[6] Westlund M, Andrekson P A, Sunnerud H, Hansryd J, Li J 2005 J. Lightwave Technol. 23 2012
[7] Liang J Q, Wang J F, Li P, Wang Y C 2013 Chin. J. Lasers 40 402009 (in Chinese) [梁俊强, 王娟芬, 李璞, 王云才 2013 中国激光 40 402009]
[8] Li J, Hansryd J, Hedekvist P O, Andrekson P A, Knudsen S N 2001 IEEE Photon. Technol. Lett. 13 987
[9] Wang W R, Yu J L, Luo J, Han B C, Wu B, Guo J Z, Wang J, Yang E Z 2011 Acta Phys. Sin. 60 104220 (in Chinese) [王文睿, 于晋龙, 罗俊, 韩丙辰, 吴波, 郭精忠, 王菊, 杨恩泽 2011 60 104220]
[10] Li J, Westlund M, Sunnerud H, Olsson B, Karlsson M, Andrekson P A 2004 IEEE Photon. Technol. Lett. 16 566
[11] Li P, Wang Y C, Zhang J Z 2010 Opt. Express 18 20360
[12] Siahlo A I, Oxenløwe L K, Berg K S, Clausen A T, Andersen P A, Peucheret C, Tersigni A, Jeppesen P, Hansen K P, Folkenberg J R 2003 IEEE Photon. Technol. Lett. 15 1147
[13] Stubkjaer K E 2000 IEEE J. Sel. Top. Quantum Electron. 6 1428
[14] Kawanishi S, Morioka T, Kamatani O, Takara H, Jacob J M, Saruwatari M 1994 Electron. Lett. 30 981
[15] Diez S, Schmidt C, Ludwig R, Weber H G, Obermann K, Kindt S, Koltchanov I, Petermann K 1997 IEEE J. Sel. Top. Quantum Electron. 3 1131
[16] Ellis A D, Kelly A E, Nesset D, Pitcher D, Moodie D G, Kashyap R 1998 Electron. Lett. 34 1958
[17] Zhang X L, Huang D X, Sun J Q, Liu D M 2001 Chin. Phys. B 10 124
[18] Nakamura S, Ueno Y, Tajima K, Sasaki J, Sugimoto T, Kato T, Shimoda T, Itoh M, Hatakeyama H, Tamanuki T, Sasaki T 2000 IEEE Photon. Technol. Lett. 12 425
[19] Wang Y, Zhang X L, Huang D X 2004 Chin. Phys. B 13 882
[20] Liu Y, Hill M T, Tangdiongga E, Waardt H, Calabretta N, Khoe G D, Dorren H J S 2003 IEEE Photon. Technol. Lett. 15 90
[21] Feng C F, Wu J, Zhang J Y, Xu K, Lin J T 2008 Chin. Phys. B 17 1000
[22] Diez S, Schmidt C, Hoffmann D, Bornholdt C, Sartorius B, Weber H G, Jiang L, Krotkus A 1998 Appl. Phys. Lett. 73 3821
[23] Liu M T, Yang A Y, Sun Y N 2008 Acta Opt. Sin. 28 151 (in Chinese) [刘茂桐, 杨爱英, 孙雨南 2008 光学学报 28 151]
[24] Zhang S J, Zhang Y L, Liu S, Li H P, Liu Y 2012 Photonics Asia International Society for Optics and Photonics Beijing, China, November 5-7, 2012 p85520M
[25] Sokoloff J P, Prucnal P R, Glesk I, Kane M 1993 IEEE Photon. Technol. Lett. 5 787
[26] Wang H, Wu J, Lin J 2005 Opt. Commun. 256 83
[27] Deng K L, Runser R J, Glesk I, Prucnal P R 1998 IEEE Photon. Technol. Lett. 10 397
[28] Bogoni A, Ponzini F, Scaffardi M, Ghelfi P, Potì L 2004 IEEE J. Sel. Top. Quantum Electron. 10 186
[29] Swift G, Ghassemlooy Z, Ray A K, Travis J R 1998 IEE Proc. Circuits Device Syst. 145 61
-
[1] Weber H G, Ludwig R, Ferber S, Schmidt-Langhorst C, Kroh M, Marembert V, Boerner C, Schubert C 2006 J. Lightwave Technol. 24 4616
[2] Duguay M A, Hansen J W 1968 Appl. Phys. Lett. 13 178
[3] Takara H, Kawanishi S, Yokoo A, Tomaru S, Kitoh T, Saruwatari M 1996 Electron. Lett. 32 2256
[4] Nogiwa S, Kawaguchi Y, Ohta H, Endo Y 2000 Electron. Lett. 36 1727
[5] Andrekson P A 1991 Electron. Lett. 27 1440
[6] Westlund M, Andrekson P A, Sunnerud H, Hansryd J, Li J 2005 J. Lightwave Technol. 23 2012
[7] Liang J Q, Wang J F, Li P, Wang Y C 2013 Chin. J. Lasers 40 402009 (in Chinese) [梁俊强, 王娟芬, 李璞, 王云才 2013 中国激光 40 402009]
[8] Li J, Hansryd J, Hedekvist P O, Andrekson P A, Knudsen S N 2001 IEEE Photon. Technol. Lett. 13 987
[9] Wang W R, Yu J L, Luo J, Han B C, Wu B, Guo J Z, Wang J, Yang E Z 2011 Acta Phys. Sin. 60 104220 (in Chinese) [王文睿, 于晋龙, 罗俊, 韩丙辰, 吴波, 郭精忠, 王菊, 杨恩泽 2011 60 104220]
[10] Li J, Westlund M, Sunnerud H, Olsson B, Karlsson M, Andrekson P A 2004 IEEE Photon. Technol. Lett. 16 566
[11] Li P, Wang Y C, Zhang J Z 2010 Opt. Express 18 20360
[12] Siahlo A I, Oxenløwe L K, Berg K S, Clausen A T, Andersen P A, Peucheret C, Tersigni A, Jeppesen P, Hansen K P, Folkenberg J R 2003 IEEE Photon. Technol. Lett. 15 1147
[13] Stubkjaer K E 2000 IEEE J. Sel. Top. Quantum Electron. 6 1428
[14] Kawanishi S, Morioka T, Kamatani O, Takara H, Jacob J M, Saruwatari M 1994 Electron. Lett. 30 981
[15] Diez S, Schmidt C, Ludwig R, Weber H G, Obermann K, Kindt S, Koltchanov I, Petermann K 1997 IEEE J. Sel. Top. Quantum Electron. 3 1131
[16] Ellis A D, Kelly A E, Nesset D, Pitcher D, Moodie D G, Kashyap R 1998 Electron. Lett. 34 1958
[17] Zhang X L, Huang D X, Sun J Q, Liu D M 2001 Chin. Phys. B 10 124
[18] Nakamura S, Ueno Y, Tajima K, Sasaki J, Sugimoto T, Kato T, Shimoda T, Itoh M, Hatakeyama H, Tamanuki T, Sasaki T 2000 IEEE Photon. Technol. Lett. 12 425
[19] Wang Y, Zhang X L, Huang D X 2004 Chin. Phys. B 13 882
[20] Liu Y, Hill M T, Tangdiongga E, Waardt H, Calabretta N, Khoe G D, Dorren H J S 2003 IEEE Photon. Technol. Lett. 15 90
[21] Feng C F, Wu J, Zhang J Y, Xu K, Lin J T 2008 Chin. Phys. B 17 1000
[22] Diez S, Schmidt C, Hoffmann D, Bornholdt C, Sartorius B, Weber H G, Jiang L, Krotkus A 1998 Appl. Phys. Lett. 73 3821
[23] Liu M T, Yang A Y, Sun Y N 2008 Acta Opt. Sin. 28 151 (in Chinese) [刘茂桐, 杨爱英, 孙雨南 2008 光学学报 28 151]
[24] Zhang S J, Zhang Y L, Liu S, Li H P, Liu Y 2012 Photonics Asia International Society for Optics and Photonics Beijing, China, November 5-7, 2012 p85520M
[25] Sokoloff J P, Prucnal P R, Glesk I, Kane M 1993 IEEE Photon. Technol. Lett. 5 787
[26] Wang H, Wu J, Lin J 2005 Opt. Commun. 256 83
[27] Deng K L, Runser R J, Glesk I, Prucnal P R 1998 IEEE Photon. Technol. Lett. 10 397
[28] Bogoni A, Ponzini F, Scaffardi M, Ghelfi P, Potì L 2004 IEEE J. Sel. Top. Quantum Electron. 10 186
[29] Swift G, Ghassemlooy Z, Ray A K, Travis J R 1998 IEE Proc. Circuits Device Syst. 145 61
计量
- 文章访问数: 5582
- PDF下载量: 149
- 被引次数: 0