搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于太赫兹光非对称解复用器结构的低开关能量、高线性度全光采样门实验研究

江镭 李璞 张建忠 孙媛媛 胡兵 王云才

引用本文:
Citation:

基于太赫兹光非对称解复用器结构的低开关能量、高线性度全光采样门实验研究

江镭, 李璞, 张建忠, 孙媛媛, 胡兵, 王云才

Experimental study on a low switching energy and high-linearity all-optical sampler based on terahertz optical asymmetric demultiplexer

Jiang Lei, Li Pu, Zhang Jian-Zhong, Sun Yuan-Yuan, Hu Bing, Wang Yun-Cai
PDF
导出引用
  • 利用多量子阱结构的非线性半导体光放大器(SOA)构建的太赫兹光非对称解复用器(TOAD), 实验实现了一个开关能量低至25 fJ, 线性度高达0.99的全光采样门. 详细分析了采样脉冲功率和非对称偏移量分别对采样窗口形状、宽度和幅度的影响, 并研究了不同采样窗口宽度下TOAD的开关能量及线性度的变化规律.
    We demonstrate experimentally a low switching energy and high-linearity all-optical sampler based on terahertz optical asymmetric demultiplexer (TOAD) composed of a nonlinear semiconductor optical amplifier (SOA) with a multiple quantum well structure. Effects of the sampling pulse power and asymmetric offset of SOA on the shape, width and amplitude of sampling windows are analyzed in detail respectively. It is found that the sampling pulse power has no effect on both the shape and the width of sampling windows, but has a significant effect on the window amplitude. Meanwhile there exists an optimal power which maximizes the sampled output and determines the switching energy of TOAD. The asymmetric offset of SOA from the center position in the loop determines the width of sampling windows and has great influences on both the shape and the amplitude of the sampling window. The sampling windows with different widths have approximately the same rise edge due to the fast response of SOA for the sampling pulse. However, the normalized amplitude of sampling windows firstly increases sharply with the increase of the asymmetry, then gradually flattens out, and tends to be stable in the end. In addition, the switching energy and linearity of TOAD are studied. The switching energy is as low as 25 fJ, and the linearity is as high as 0.99. Moreover, at different window widths, the switching energy of TOAD remains the same and the sampling windows have a very good linearity. However, the sensitivity of a TOAD sampler with different width is different: the wider the sampling window, the higher the sensitivity and the larger the corresponding dynamic range.
    • 基金项目: 国家自然科学基金科学仪器基础研究专款(批准号: 61227016)和国家自然科学基金青年科学基金(批准号: 61205142, 51404165)资助的课题.
    • Funds: Project supported by the Special Fund For Basic Research on Scientific Instruments of the National Natural Science Foundation of China (Grant No. 61227016), and the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 61205142, 51404165).
    [1]

    Weber H G, Ludwig R, Ferber S, Schmidt-Langhorst C, Kroh M, Marembert V, Boerner C, Schubert C 2006 J. Lightwave Technol. 24 4616

    [2]

    Duguay M A, Hansen J W 1968 Appl. Phys. Lett. 13 178

    [3]

    Takara H, Kawanishi S, Yokoo A, Tomaru S, Kitoh T, Saruwatari M 1996 Electron. Lett. 32 2256

    [4]

    Nogiwa S, Kawaguchi Y, Ohta H, Endo Y 2000 Electron. Lett. 36 1727

    [5]

    Andrekson P A 1991 Electron. Lett. 27 1440

    [6]

    Westlund M, Andrekson P A, Sunnerud H, Hansryd J, Li J 2005 J. Lightwave Technol. 23 2012

    [7]

    Liang J Q, Wang J F, Li P, Wang Y C 2013 Chin. J. Lasers 40 402009 (in Chinese) [梁俊强, 王娟芬, 李璞, 王云才 2013 中国激光 40 402009]

    [8]

    Li J, Hansryd J, Hedekvist P O, Andrekson P A, Knudsen S N 2001 IEEE Photon. Technol. Lett. 13 987

    [9]

    Wang W R, Yu J L, Luo J, Han B C, Wu B, Guo J Z, Wang J, Yang E Z 2011 Acta Phys. Sin. 60 104220 (in Chinese) [王文睿, 于晋龙, 罗俊, 韩丙辰, 吴波, 郭精忠, 王菊, 杨恩泽 2011 60 104220]

    [10]

    Li J, Westlund M, Sunnerud H, Olsson B, Karlsson M, Andrekson P A 2004 IEEE Photon. Technol. Lett. 16 566

    [11]

    Li P, Wang Y C, Zhang J Z 2010 Opt. Express 18 20360

    [12]

    Siahlo A I, Oxenløwe L K, Berg K S, Clausen A T, Andersen P A, Peucheret C, Tersigni A, Jeppesen P, Hansen K P, Folkenberg J R 2003 IEEE Photon. Technol. Lett. 15 1147

    [13]

    Stubkjaer K E 2000 IEEE J. Sel. Top. Quantum Electron. 6 1428

    [14]

    Kawanishi S, Morioka T, Kamatani O, Takara H, Jacob J M, Saruwatari M 1994 Electron. Lett. 30 981

    [15]

    Diez S, Schmidt C, Ludwig R, Weber H G, Obermann K, Kindt S, Koltchanov I, Petermann K 1997 IEEE J. Sel. Top. Quantum Electron. 3 1131

    [16]

    Ellis A D, Kelly A E, Nesset D, Pitcher D, Moodie D G, Kashyap R 1998 Electron. Lett. 34 1958

    [17]

    Zhang X L, Huang D X, Sun J Q, Liu D M 2001 Chin. Phys. B 10 124

    [18]

    Nakamura S, Ueno Y, Tajima K, Sasaki J, Sugimoto T, Kato T, Shimoda T, Itoh M, Hatakeyama H, Tamanuki T, Sasaki T 2000 IEEE Photon. Technol. Lett. 12 425

    [19]

    Wang Y, Zhang X L, Huang D X 2004 Chin. Phys. B 13 882

    [20]

    Liu Y, Hill M T, Tangdiongga E, Waardt H, Calabretta N, Khoe G D, Dorren H J S 2003 IEEE Photon. Technol. Lett. 15 90

    [21]

    Feng C F, Wu J, Zhang J Y, Xu K, Lin J T 2008 Chin. Phys. B 17 1000

    [22]

    Diez S, Schmidt C, Hoffmann D, Bornholdt C, Sartorius B, Weber H G, Jiang L, Krotkus A 1998 Appl. Phys. Lett. 73 3821

    [23]

    Liu M T, Yang A Y, Sun Y N 2008 Acta Opt. Sin. 28 151 (in Chinese) [刘茂桐, 杨爱英, 孙雨南 2008 光学学报 28 151]

    [24]

    Zhang S J, Zhang Y L, Liu S, Li H P, Liu Y 2012 Photonics Asia International Society for Optics and Photonics Beijing, China, November 5-7, 2012 p85520M

    [25]

    Sokoloff J P, Prucnal P R, Glesk I, Kane M 1993 IEEE Photon. Technol. Lett. 5 787

    [26]

    Wang H, Wu J, Lin J 2005 Opt. Commun. 256 83

    [27]

    Deng K L, Runser R J, Glesk I, Prucnal P R 1998 IEEE Photon. Technol. Lett. 10 397

    [28]

    Bogoni A, Ponzini F, Scaffardi M, Ghelfi P, Potì L 2004 IEEE J. Sel. Top. Quantum Electron. 10 186

    [29]

    Swift G, Ghassemlooy Z, Ray A K, Travis J R 1998 IEE Proc. Circuits Device Syst. 145 61

  • [1]

    Weber H G, Ludwig R, Ferber S, Schmidt-Langhorst C, Kroh M, Marembert V, Boerner C, Schubert C 2006 J. Lightwave Technol. 24 4616

    [2]

    Duguay M A, Hansen J W 1968 Appl. Phys. Lett. 13 178

    [3]

    Takara H, Kawanishi S, Yokoo A, Tomaru S, Kitoh T, Saruwatari M 1996 Electron. Lett. 32 2256

    [4]

    Nogiwa S, Kawaguchi Y, Ohta H, Endo Y 2000 Electron. Lett. 36 1727

    [5]

    Andrekson P A 1991 Electron. Lett. 27 1440

    [6]

    Westlund M, Andrekson P A, Sunnerud H, Hansryd J, Li J 2005 J. Lightwave Technol. 23 2012

    [7]

    Liang J Q, Wang J F, Li P, Wang Y C 2013 Chin. J. Lasers 40 402009 (in Chinese) [梁俊强, 王娟芬, 李璞, 王云才 2013 中国激光 40 402009]

    [8]

    Li J, Hansryd J, Hedekvist P O, Andrekson P A, Knudsen S N 2001 IEEE Photon. Technol. Lett. 13 987

    [9]

    Wang W R, Yu J L, Luo J, Han B C, Wu B, Guo J Z, Wang J, Yang E Z 2011 Acta Phys. Sin. 60 104220 (in Chinese) [王文睿, 于晋龙, 罗俊, 韩丙辰, 吴波, 郭精忠, 王菊, 杨恩泽 2011 60 104220]

    [10]

    Li J, Westlund M, Sunnerud H, Olsson B, Karlsson M, Andrekson P A 2004 IEEE Photon. Technol. Lett. 16 566

    [11]

    Li P, Wang Y C, Zhang J Z 2010 Opt. Express 18 20360

    [12]

    Siahlo A I, Oxenløwe L K, Berg K S, Clausen A T, Andersen P A, Peucheret C, Tersigni A, Jeppesen P, Hansen K P, Folkenberg J R 2003 IEEE Photon. Technol. Lett. 15 1147

    [13]

    Stubkjaer K E 2000 IEEE J. Sel. Top. Quantum Electron. 6 1428

    [14]

    Kawanishi S, Morioka T, Kamatani O, Takara H, Jacob J M, Saruwatari M 1994 Electron. Lett. 30 981

    [15]

    Diez S, Schmidt C, Ludwig R, Weber H G, Obermann K, Kindt S, Koltchanov I, Petermann K 1997 IEEE J. Sel. Top. Quantum Electron. 3 1131

    [16]

    Ellis A D, Kelly A E, Nesset D, Pitcher D, Moodie D G, Kashyap R 1998 Electron. Lett. 34 1958

    [17]

    Zhang X L, Huang D X, Sun J Q, Liu D M 2001 Chin. Phys. B 10 124

    [18]

    Nakamura S, Ueno Y, Tajima K, Sasaki J, Sugimoto T, Kato T, Shimoda T, Itoh M, Hatakeyama H, Tamanuki T, Sasaki T 2000 IEEE Photon. Technol. Lett. 12 425

    [19]

    Wang Y, Zhang X L, Huang D X 2004 Chin. Phys. B 13 882

    [20]

    Liu Y, Hill M T, Tangdiongga E, Waardt H, Calabretta N, Khoe G D, Dorren H J S 2003 IEEE Photon. Technol. Lett. 15 90

    [21]

    Feng C F, Wu J, Zhang J Y, Xu K, Lin J T 2008 Chin. Phys. B 17 1000

    [22]

    Diez S, Schmidt C, Hoffmann D, Bornholdt C, Sartorius B, Weber H G, Jiang L, Krotkus A 1998 Appl. Phys. Lett. 73 3821

    [23]

    Liu M T, Yang A Y, Sun Y N 2008 Acta Opt. Sin. 28 151 (in Chinese) [刘茂桐, 杨爱英, 孙雨南 2008 光学学报 28 151]

    [24]

    Zhang S J, Zhang Y L, Liu S, Li H P, Liu Y 2012 Photonics Asia International Society for Optics and Photonics Beijing, China, November 5-7, 2012 p85520M

    [25]

    Sokoloff J P, Prucnal P R, Glesk I, Kane M 1993 IEEE Photon. Technol. Lett. 5 787

    [26]

    Wang H, Wu J, Lin J 2005 Opt. Commun. 256 83

    [27]

    Deng K L, Runser R J, Glesk I, Prucnal P R 1998 IEEE Photon. Technol. Lett. 10 397

    [28]

    Bogoni A, Ponzini F, Scaffardi M, Ghelfi P, Potì L 2004 IEEE J. Sel. Top. Quantum Electron. 10 186

    [29]

    Swift G, Ghassemlooy Z, Ray A K, Travis J R 1998 IEE Proc. Circuits Device Syst. 145 61

  • [1] 孙凡, 文峰, 武保剑, Tan Ming-Ming, 凌云, 邱昆. 基于双向正交泵浦半导体光放大器结构的全光相位保持幅度再生技术.  , 2022, 71(20): 204204. doi: 10.7498/aps.71.20220703
    [2] 张永棠. 一种广义三模腔光机械系统的相干完美吸收与透射.  , 2017, 66(10): 107101. doi: 10.7498/aps.66.107101
    [3] 李璞, 江镭, 孙媛媛, 张建国, 王云才. 面向全光物理随机数发生器的混沌实时光采样研究.  , 2015, 64(23): 230502. doi: 10.7498/aps.64.230502
    [4] 高松, 盛新志, 冯震, 吴重庆, 董宏辉. 基于半导体光放大器中非线性偏振旋转效应单一光缓存环全光时隙交换处理能力研究.  , 2014, 63(8): 084205. doi: 10.7498/aps.63.084205
    [5] 王文睿, 于晋龙, 韩丙辰, 郭精忠, 罗俊, 王菊, 刘毅, 杨恩泽. 基于高非线性光纤中非线性偏振旋转效应的全光逻辑门研究.  , 2012, 61(8): 084214. doi: 10.7498/aps.61.084214
    [6] 李培丽, 施伟华, 黄德修, 张新亮. 半导体光放大器中垂直双抽运四波混频效应的理论研究.  , 2012, 61(8): 084209. doi: 10.7498/aps.61.084209
    [7] 刘观辉, 裴丽, 宁提纲, 高嵩, 李晶, 张义军. 基于新型偏振稳定毫米波发生器的光载无线通信下行链路.  , 2012, 61(9): 094205. doi: 10.7498/aps.61.094205
    [8] 于晋龙, 罗俊, 韩丙辰, 郭精忠, 吴波, 王菊, 张晓媛, 杨恩泽. 基于光纤光参量放大的异步双波长全光再生技术研究.  , 2010, 59(9): 6138-6144. doi: 10.7498/aps.59.6138
    [9] 李培丽, 黄德修, 张新亮. 基于PolSK调制的四波混频型超快全光译码器.  , 2009, 58(3): 1785-1792. doi: 10.7498/aps.58.1785
    [10] 牛生晓, 王云才, 贺虎成, 张明江. 光注入半导体激光器产生可调谐高频微波.  , 2009, 58(10): 7241-7245. doi: 10.7498/aps.58.7241
    [11] 周俐娜, 张新亮, 徐恩明, 黄德修. 基于半导体光放大器的一阶IIR微波光子学滤波器及其品质因素分析.  , 2009, 58(2): 1036-1041. doi: 10.7498/aps.58.1036
    [12] 黄喜, 张新亮, 董建绩, 黄德修. 半导体光放大器超快折射率变化动态特性的研究.  , 2009, 58(5): 3185-3192. doi: 10.7498/aps.58.3185
    [13] 董建绩, 张新亮, 王 阳, 黄德修. 基于单个半导体光放大器的高速多功能逻辑门.  , 2008, 57(4): 2222-2228. doi: 10.7498/aps.57.2222
    [14] 董建绩, 张新亮, 付松年, 沈 平, 黄德修. 基于半导体光放大器瞬态交叉相位调制效应的高速反相和同相波长转换的研究.  , 2007, 56(4): 2250-2255. doi: 10.7498/aps.56.2250
    [15] 缪庆元, 黄德修, 张新亮, 余永林, 洪 伟. 集成双波导半导体光放大器光开关实现波长转换的理论研究.  , 2007, 56(2): 902-907. doi: 10.7498/aps.56.902
    [16] 蒋 中, 张新亮, 黄德修. 半导体光放大器亚皮秒量级超快动态特性的研究.  , 2006, 55(9): 4713-4719. doi: 10.7498/aps.55.4713
    [17] 吴建伟, 夏光琼, 吴正茂. 基于半导体光放大器和非线性光纤环镜的光脉冲压缩器的设计模型和理论分析.  , 2004, 53(4): 1105-1109. doi: 10.7498/aps.53.1105
    [18] 马 宏, 朱光喜, 陈四海, 易新建. 金属有机化学气相外延生长1310nm偏振无关混合应变量子阱半导体光放大器研究.  , 2004, 53(12): 4257-4261. doi: 10.7498/aps.53.4257
    [19] 夏光琼, 吴正茂, 林恭如. 利用较完善模型研究半导体光放大器对皮秒光脉冲的放大.  , 2004, 53(2): 490-493. doi: 10.7498/aps.53.490
    [20] 马 宏, 陈四海, 金锦炎, 易新建, 朱光喜. 1.55μm AlGaInAs-InP偏振无关半导体光放大器及其温度特性研究.  , 2004, 53(6): 1868-1872. doi: 10.7498/aps.53.1868
计量
  • 文章访问数:  5582
  • PDF下载量:  149
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-07
  • 修回日期:  2015-03-03
  • 刊出日期:  2015-08-05

/

返回文章
返回
Baidu
map