搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

剪切形变对硼氮掺杂碳纳米管超晶格电子结构和光学性能的影响

姜艳 刘贵立

引用本文:
Citation:

剪切形变对硼氮掺杂碳纳米管超晶格电子结构和光学性能的影响

姜艳, 刘贵立

Influences of shear deformation on electronic structure and optical properties of B, N doped carbon nanotube superlattices

Jiang Yan, Liu Gui-Li
PDF
导出引用
  • 碳纳米管作为最先进的纳米材料之一, 在电子和光学器件领域有潜在的应用前景, 因此引起了广泛关注. 掺杂、变形及形成超晶格为调制纳米管电子、光学性质提供了有效途径. 为了理解相关机理, 利用第一性原理方法研究了不同剪切形变下扶手椅型硼氮交替环状掺杂碳纳米管超晶格的空间结构、电子结构和光学性质. 研究发现, 剪切形变会改变碳纳米管的几何结构, 当剪切形变大于12%后, 其几何结构有较大畸变. 结合能计算表明, 剪切形变改变了掺杂碳纳米管超晶格的稳定性, 剪切形变越大, 稳定性越低. 电荷布居分析表明, 硼氮掺杂碳纳米管超晶格中离子键和共价键共存. 能带和态密度分析发现硼氮交替环状掺杂使碳纳米管超晶格从金属转变为半导体. 随着剪切形变加剧, 纳米管超晶格能隙逐渐减小, 当剪切形变大于12%后, 碳纳米管又从半导体变为金属. 在光学性能中, 剪切形变的硼氮掺杂碳纳米管超晶格的光吸收系数及反射率峰值较未受剪切形变的均减小, 且均出现了红移.
    Carbon nanotubes, one of the most advanced nanoscale materials, have attracted much research attention since they exhibited semiconductor, metal or insulator properties depending on their geometric structures. Carbon nanotubes have great potential in various applications in electronic and optical device. Dopants to the carbon nanotubes intentionally could offer a possible route to change and tune their electronic, optical properties. Another important and effective method is to deform the carbon nanotubes structure. Superlattice structures can offer extra degrees of freedom in designing electronic, optical devices. To understand the involved mechanism, in this paper, the geometry structures, electronic structures and optical properties of the armchair carbon nanotube superlattices doped cyclic alternately with B and N under different shear deformations are investigated by the first-principles method through using the CASTEP code in MS 6.0. It is found that the structures of carbon nanotube superlattices can be dramatically changed by shear deformation. When the shear deformation is less than 9%, the optimization geometry structures of carbon nanotube superlattices are still similar to tubular structures, when the shear deformation is greater than 12%, the geometry structures of these systems have large distortions. The results about the binding energy show that the shear deformation changes the stability of the armchair doped carbon nanotube superlattice. The larger the shear deformation, the lower the stability of the doped carbon nanotube superlattices is. The analysis of charge population show that the covalent bond and ionic bond coexist in the armchair carbon nanotube superlattices doped cyclically alternately with B and N. The band gap of the carbon nanotube superlattice is affected by N, B dopants, as a result, the carbon nanotube superlattice changes from a metal to a semiconductor. Compared with the (5, 5) nanotube superlattices, the band gaps of the (7, 7), (9, 9) doped carbon nanotube superlattices increase. With increasing the shear deformation, the band gap of the doped carbon nanotube superlattices decreases gradually, when the shear deformation is greater than 12%, the band gap changes into 0 eV, the carbon nanotube superlattice changes back into a metal from a semiconductor. The analysis of density of states obtains the same conclusions as the energy band analysis. In optical properties, compared with the armchair carbon nanotube superlattices doped cyclically alternately with B and N without shear deformation, those systems under shear deformation have the peaks of the absorption coefficient and the reflectivity that are all reduced, and are all red-shifted.
    • 基金项目: 国家自然科学基金(批准号: 51371049)和辽宁省自然科学基金(批准号: 20102173)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51371049) and the Natural Science Foundation of Liaoning Province, China (Grant No. 20102173).
    [1]

    Wei Y, Hu H F, Wang Z Y, Cheng C P, Chen N T, Xie N 2011 Acta Phys. Sin. 60 027307 (in Chinese) [魏燕, 胡慧芳, 王志勇, 程彩萍, 陈南庭, 谢能 2011 60 027307]

    [2]

    Jin L, Fu H G, Xie Y, Yu H T 2012 Chin. Phys. B 21 057901

    [3]

    Kalbac M, Kavan L, Dunsch L, Dresselhaus M S 2008 Nano Lett. 8 1257

    [4]

    Yin L C, Saito R, Dresselhaus M S 2010 Nano Lett. 10 3290

    [5]

    Taheri S, Shadman M, Soltanabadi A, Ahadi Z 2014 Int. Nano Lett. 4 81

    [6]

    Nawazish A K, Sadaf A 2012 J. Alloys Compd. 538 183

    [7]

    Zhang L, Cao X W, Feng M, Wang Y F 2008 J. Light Scatt. 20 295 (in Chinese) [张磊, 曹学伟, 冯敏, 王玉芳 2008 光散射学报 20 295]

    [8]

    Li R, Sun D H 2014 Acta Phys. Sin. 63 056101 (in Chinese) [李瑞, 孙丹海 2014 63 056101]

    [9]

    Wu H L, Qiu J S, Hao C, Tang Z A 2006 J. Dalian Univ. Tech. 46 328 (in Chinese) [吴红丽, 邱介山, 郝策, 唐祯安 2006 大连理工大学学报 46 328]

    [10]

    Zhang H, Chen X H, Zhang Z H, Qiu M 2006 Acta Phys. Chim. Sin. 22 1101 (in Chinese) [张华, 陈小华, 张振华, 邱明 2006 物理化学学报 22 1101]

    [11]

    Yuan J H, Cheng Y M 2007 Acta Phys. Chim. Sin. 23 889 (in Chinese) [袁剑辉, 程玉民 2007 物理化学学报 23 889]

    [12]

    Zhang L J, Hu H F, Wang Z Y, Wei Y, Jia J F 2010 Acta Phys. Sin. 59 527 (in Chinese) [张丽娟, 胡慧芳, 王志勇, 魏燕, 贾金凤 2010 59 527]

    [13]

    Niu W X, Zhang H, Gong M, Cheng X L 2013 Chin. Phys. B 22 066802

    [14]

    Barghi S H, Tsotsis T T, Sahimi M 2014 Int. J. Hydrogen Energy 39 21107

    [15]

    Zheng Q S, Xu Z P, Wang L F 2004 Adv. Mech. 34 97 (in Chinese) [郑泉水, 徐志平, 王立峰 2004 力学进展 34 97]

    [16]

    Sagara T, Kurumi S, Suzuki K 2014 Appl. Surf. Sci. 292 39

    [17]

    Cui S W, Zhu R Z, Wang X S, Yang H X 2014 Chin. Phys. B 23 106105

    [18]

    Shamsudin M S, Mohammad M, Zobir S A M, Asli N A, Bakar S A, Abdullah S, Yahya S Y S, Mahmood M R 2013 J. Nanostruct. Chem. 3 13

    [19]

    Cheng C P, Chen G H, Li W H, Luo C L 2012 J. Nanjing Norm. Univ. ( Natural Science Edition) 35 30 (in Chinese) [程承平, 陈贵虎, 李伟红, 罗成林 2012 南京师大学报(自然科学版) 35 30]

    [20]

    Wu Y D, Zhang X C, Zhong W F, Liang Y D 2006 J. Huazhong Univ. Sci. Tech. (Nature Science Edition) 34 110 (in Chinese) [吴永东, 张小春, 钟伟芳, 梁以德 2006 华中科技大学学报(自然科学版) 34 110]

    [21]

    Ghavamian A, Rahmandoust M, Öchsner A 2013 Composites Part B 44 52

    [22]

    Hilarius K, Lellinger D, Alig I, Villmow T, Pegel S, Pötschke P 2013 Polymer 54 5865

    [23]

    Wei J W, Pu L C, Hu N, Hu H F, Zeng H, Liang J W 2011 J. Chongqing Univ. Tech. (Natural Science) 35 94 (in Chinese) [韦建卫, 蒲利春, 胡南, 胡慧芳, 曾晖, 梁君武 2011 重庆理工大学学报(自然科学) 35 94]

    [24]

    Bai X D, Wang E G 2009 Chin. Basic Sci. 11 28 (in Chinese) [白雪冬, 王恩哥 2009 中国基础科学 11 28]

    [25]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717

    [26]

    Marlo M, Milman V 2000 Phys. Rev. B 62 2899

    [27]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

  • [1]

    Wei Y, Hu H F, Wang Z Y, Cheng C P, Chen N T, Xie N 2011 Acta Phys. Sin. 60 027307 (in Chinese) [魏燕, 胡慧芳, 王志勇, 程彩萍, 陈南庭, 谢能 2011 60 027307]

    [2]

    Jin L, Fu H G, Xie Y, Yu H T 2012 Chin. Phys. B 21 057901

    [3]

    Kalbac M, Kavan L, Dunsch L, Dresselhaus M S 2008 Nano Lett. 8 1257

    [4]

    Yin L C, Saito R, Dresselhaus M S 2010 Nano Lett. 10 3290

    [5]

    Taheri S, Shadman M, Soltanabadi A, Ahadi Z 2014 Int. Nano Lett. 4 81

    [6]

    Nawazish A K, Sadaf A 2012 J. Alloys Compd. 538 183

    [7]

    Zhang L, Cao X W, Feng M, Wang Y F 2008 J. Light Scatt. 20 295 (in Chinese) [张磊, 曹学伟, 冯敏, 王玉芳 2008 光散射学报 20 295]

    [8]

    Li R, Sun D H 2014 Acta Phys. Sin. 63 056101 (in Chinese) [李瑞, 孙丹海 2014 63 056101]

    [9]

    Wu H L, Qiu J S, Hao C, Tang Z A 2006 J. Dalian Univ. Tech. 46 328 (in Chinese) [吴红丽, 邱介山, 郝策, 唐祯安 2006 大连理工大学学报 46 328]

    [10]

    Zhang H, Chen X H, Zhang Z H, Qiu M 2006 Acta Phys. Chim. Sin. 22 1101 (in Chinese) [张华, 陈小华, 张振华, 邱明 2006 物理化学学报 22 1101]

    [11]

    Yuan J H, Cheng Y M 2007 Acta Phys. Chim. Sin. 23 889 (in Chinese) [袁剑辉, 程玉民 2007 物理化学学报 23 889]

    [12]

    Zhang L J, Hu H F, Wang Z Y, Wei Y, Jia J F 2010 Acta Phys. Sin. 59 527 (in Chinese) [张丽娟, 胡慧芳, 王志勇, 魏燕, 贾金凤 2010 59 527]

    [13]

    Niu W X, Zhang H, Gong M, Cheng X L 2013 Chin. Phys. B 22 066802

    [14]

    Barghi S H, Tsotsis T T, Sahimi M 2014 Int. J. Hydrogen Energy 39 21107

    [15]

    Zheng Q S, Xu Z P, Wang L F 2004 Adv. Mech. 34 97 (in Chinese) [郑泉水, 徐志平, 王立峰 2004 力学进展 34 97]

    [16]

    Sagara T, Kurumi S, Suzuki K 2014 Appl. Surf. Sci. 292 39

    [17]

    Cui S W, Zhu R Z, Wang X S, Yang H X 2014 Chin. Phys. B 23 106105

    [18]

    Shamsudin M S, Mohammad M, Zobir S A M, Asli N A, Bakar S A, Abdullah S, Yahya S Y S, Mahmood M R 2013 J. Nanostruct. Chem. 3 13

    [19]

    Cheng C P, Chen G H, Li W H, Luo C L 2012 J. Nanjing Norm. Univ. ( Natural Science Edition) 35 30 (in Chinese) [程承平, 陈贵虎, 李伟红, 罗成林 2012 南京师大学报(自然科学版) 35 30]

    [20]

    Wu Y D, Zhang X C, Zhong W F, Liang Y D 2006 J. Huazhong Univ. Sci. Tech. (Nature Science Edition) 34 110 (in Chinese) [吴永东, 张小春, 钟伟芳, 梁以德 2006 华中科技大学学报(自然科学版) 34 110]

    [21]

    Ghavamian A, Rahmandoust M, Öchsner A 2013 Composites Part B 44 52

    [22]

    Hilarius K, Lellinger D, Alig I, Villmow T, Pegel S, Pötschke P 2013 Polymer 54 5865

    [23]

    Wei J W, Pu L C, Hu N, Hu H F, Zeng H, Liang J W 2011 J. Chongqing Univ. Tech. (Natural Science) 35 94 (in Chinese) [韦建卫, 蒲利春, 胡南, 胡慧芳, 曾晖, 梁君武 2011 重庆理工大学学报(自然科学) 35 94]

    [24]

    Bai X D, Wang E G 2009 Chin. Basic Sci. 11 28 (in Chinese) [白雪冬, 王恩哥 2009 中国基础科学 11 28]

    [25]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717

    [26]

    Marlo M, Milman V 2000 Phys. Rev. B 62 2899

    [27]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

  • [1] 吕行, 富容国, 常本康, 郭欣, 王芝. 透射式GaAs光电阴极性能提高以及结构优化.  , 2024, 73(3): 037801. doi: 10.7498/aps.73.20231542
    [2] 李婷, 毕晓月, 孔婧文. 剪切形变下磷烯的力学和热学性能.  , 2023, 72(12): 126201. doi: 10.7498/aps.72.20230084
    [3] 曾凡菊, 谭永前, 胡伟, 唐孝生, 张小梅, 尹海峰. 超小晶粒锡掺杂CsPbBr3蓝光量子点的合成及其光学性能研究.  , 2022, 71(4): 047401. doi: 10.7498/aps.71.20211895
    [4] 曾凡菊, 谭永前, Wei Hu, 唐孝生, 张小梅, 尹海峰. 超小晶粒锡掺杂CsPbBr3蓝光量子点的合成及其光学性能研究.  , 2021, (): . doi: 10.7498/aps.70.20211895
    [5] 龚凌云, 张萍, 陈倩, 楼志豪, 许杰, 高峰. Nb5+掺杂钛酸锶结构与性能的第一性原理研究.  , 2021, 70(22): 227101. doi: 10.7498/aps.70.20211241
    [6] 刘海永, 张敏, 林国强, 韩克昌, 张林. 脉冲偏压电弧离子镀Cr-O薄膜结构及光学性能研究.  , 2015, 64(13): 138104. doi: 10.7498/aps.64.138104
    [7] 沈杰, 魏宾, 周静, Shen Shirley Zhiqi, 薛广杰, 刘韩星, 陈文. Ba(Mg1/3Nb2/3)O3电子结构第一性原理计算及光学性能研究.  , 2015, 64(21): 217801. doi: 10.7498/aps.64.217801
    [8] 余志强, 张昌华, 郎建勋. P掺杂硅纳米管电子结构与光学性质的研究.  , 2014, 63(6): 067102. doi: 10.7498/aps.63.067102
    [9] 郭元军, 刘瑞萍, 杨致, 李秀燕. 过渡元素掺杂对Mo力学性能的第一性原理研究.  , 2014, 63(8): 087102. doi: 10.7498/aps.63.087102
    [10] 贾晓琴, 何智兵, 牛忠彩, 何小珊, 韦建军, 李蕊, 杜凯. 热处理对制备辉光放电聚合物薄膜结构及光学性能的影响.  , 2013, 62(5): 056804. doi: 10.7498/aps.62.056804
    [11] 黄小林, 侯丽珍, 喻博闻, 陈国良, 王世良, 马亮, 刘新利, 贺跃辉. Cu/C核/壳纳米结构的气相合成、形成机理及其光学性能研究.  , 2013, 62(10): 108102. doi: 10.7498/aps.62.108102
    [12] 章瑞铄, 刘涌, 滕繁, 宋晨路, 韩高荣. 锐钛矿相和金红石相TiO2:Nb的光电性能研究.  , 2012, 61(1): 017101. doi: 10.7498/aps.61.017101
    [13] 管东波, 毛健. Magnli相亚氧化钛Ti8O15的电子结构和光学性能的第一性原理研究.  , 2012, 61(1): 017102. doi: 10.7498/aps.61.017102
    [14] 赵静, 张益军, 常本康, 熊雅娟, 张俊举, 石峰, 程宏昌, 崔东旭. 高性能透射式GaAs光电阴极量子效率拟合与结构研究.  , 2011, 60(10): 107802. doi: 10.7498/aps.60.107802
    [15] 王志勇, 胡慧芳, 顾林, 王巍, 贾金凤. 含Stone-Wales缺陷zigzag型石墨烯纳米带的电学和光学性能研究.  , 2011, 60(1): 017102. doi: 10.7498/aps.60.017102
    [16] 吴雪炜, 吴大建, 刘晓峻. 硼(氮、氟)掺杂对TiO2纳米颗粒光学性能的影响.  , 2010, 59(7): 4788-4793. doi: 10.7498/aps.59.4788
    [17] 张丽娟, 胡慧芳, 王志勇, 魏燕, 贾金凤. 硼掺杂单壁碳纳米管吸附甲醛的电子结构和光学性能研究.  , 2010, 59(1): 527-531. doi: 10.7498/aps.59.527
    [18] 段满益, 徐 明, 周海平, 陈青云, 胡志刚, 董成军. 碳掺杂ZnO的电子结构和光学性质.  , 2008, 57(10): 6520-6525. doi: 10.7498/aps.57.6520
    [19] 邢海英, 范广涵, 赵德刚, 何 苗, 章 勇, 周天明. Mn掺杂GaN电子结构和光学性质研究.  , 2008, 57(10): 6513-6519. doi: 10.7498/aps.57.6513
    [20] 彭丽萍, 徐 凌, 尹建武. N掺杂锐钛矿TiO2光学性能的第一性原理研究.  , 2007, 56(3): 1585-1589. doi: 10.7498/aps.56.1585
计量
  • 文章访问数:  6070
  • PDF下载量:  156
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-31
  • 修回日期:  2015-02-27
  • 刊出日期:  2015-07-05

/

返回文章
返回
Baidu
map