-
使用中心波长为450 nm的高功率多模蓝光激光管(LD)作为激励光源, 结合电学调制相消法和离轴石英增强光声光谱(QEPAS)配置, 设计了一款高灵敏二氧化氮传感器. 电学调制相消法使离轴QEPAS传感器的背景噪声降低至1/269, 在标准大气压和1 s积分时间下, 获得的探测灵敏度为4.5 ppb, 对应的归一化噪声等效吸收系数(1 )为2.210-8 cm-1W/Hz1/2. 延长积分时间到46 s, 灵敏度能够进一步下降到0.34 ppb. 气体流速对该传感器的影响也被研究.
-
关键词:
- 电学调制相消法 /
- 石英增强光声光谱 /
- 离轴石英增强光声光谱传感器 /
- 高功率激光管
A highly sensitive NO2 optical sensor has been designed by means of combining the electrical modulation cancellation method (E-MOCAM) and off-beam quartz enhanced photoacoustic spectroscopy (QEPAS). A high power multimode blue laser diode emitting at around 450 nm is used as the excitation light source of the photoacoustic signal. In the E-MOCAM, the balance signal is generated from a dual-channel function generator and introduced to the pin of the quartz tuning fork (QTF) to balance out the huge background noise. The principle of the E-MOCAM is explained in detail from the perspective of equivalent circuit of QTF, and the background noise of the high power LD-based QEPAS sensor is analyzed. Results show that stray light noises coming from the LD beam and blocked by the resonator and the photoacoustic cell are dominated in all the noises. Gas flow noise of QEPAS sensor is also estimated, and excessive noise could be introduced by the gas flow even at a rate below 200 sccm. The gas flow noise is measured at different gas flow rate, from 60 to 200 sccm. Compared with the QEPAS sensor based on wavelength modulation, the sensor based on amplitude modulation, especially in the case of high power light source, is more sensitive to the gas flow. The ultimate background noise of the off-beam QEPAS sensor can be reduced by 269 times after the E-MOCAM is applied. The performance of the NO2 QEPAS sensor is evaluated in the NO2/N2 mixtures of different concentrations, ranging from ppb to ppm levels. In the case of the 2.85 ppm NO2 measurement, the SNR of 630 is achieved. A linear fitting is implemented to evaluate the response of the sensor, resulting in an R square value of 0.999. Allan plot is used to investigate the long term stability of the sensor. The original background noise produced from the off-beam QEPAS configuration is less than that from the on-beam QEPAS configuration, thus the combination of off-beam QEPAS configuration and E-MOCAM shows a better stability. A detection limit of 0.34 ppb (1, 46 s integration time) for NO2 in N2 at atmospheric pressure can be achieved, which corresponds to a normalized noise equivalent absorption coefficient of 2.210-8 cm-1W/Hz1/2.-
Keywords:
- electric modulation cancellation method /
- quartz enhanced photoacoustic spectroscopy /
- off-beam quartz ehnhanced photoacoustic spectroscopy sensor /
- high power laser diode
[1] Cao Y C, Jin W, Ho H L 2012 Sens. Actuators, B 174 24
[2] Shao J, Lathdavong L, Thavixay P, Axner O 2007 J. Opt. Soc. Am. B 24 2294
[3] Zhang Z Q, Ma B S, Jia S H 2013 Assembly and Manufacturing (ISAM) IEEE International Symposium 2013, p230
[4] Kosterev A A, Bakhirkin Y A, Curl R F, Tittel F K 2002 Opt. Lett. 27 1902
[5] Ma Y F, Lewicki R, Razeghi M, Tittel F K 2013 Opt. Express 21 1008
[6] Liu Y Y, Dong L, Wu H P, Zheng H D, Ma W G, Zhang L, Yin W B, Jia S T 2013 Acta Phys. Sin. 62 220701 (in Chinese) [刘妍研, 董磊, 武红鹏, 郑华丹, 马维光, 张雷, 尹王保, 贾锁堂 2013 62 220701]
[7] Wu H P, Dong L, Zheng H D, Liu Y Y, Ma W G, Zhang L, Wang W Y, Zhu Q K, Yin W B, Jia S T 2013 Acta Phys. Sin. 62 070701 (in Chinese) [武红鹏, 董磊, 郑华丹, 刘研研, 马维光, 张雷, 王五一, 朱庆科, 尹王保, 贾锁堂 2013 62 070701]
[8] Gong P, Xie L, Qi X Q, Wang R, Wang H, Chang M C, Yang H X, Sun F, Li G P 2015 Chin. Phys. B 24 014206
[9] Dong L, Kosterev A A, Thomazy D, Tittel F K 2010 Appl. Phys. B 100 627
[10] Liu K, Guo X Y, Yi H M, Chen W D, Zhang W J, Gao X M 2009 Opt. Lett. 34 1594
[11] Wu H P, Dong L, Ren W, Yin W B, Ma W G, Zhang L, Jia S T, Tittel F K 2015 Sens. Actuators, B 206 364
[12] Yi H M, Chen W D, Sun S W, Liu K, Tan T, Gao X M 2012 Opt. Express 20 9187
[13] Böttger S, Köhring M, Willer U, Schade W 2013 Appl. Phys. B 113 227
[14] Yi H M, Liu K, Chen W D, Tan T, Wang L, Gao X M 2011 Opt. Lett. 36 481
[15] Spagnolo V, Dong L, Kosterev A A, Tittel F K 2012 Opt. Express 20 3401
[16] Spagnolo V, Dong L, Kosterev A A, Thomazy D, Doty J H, Tittel F K 2011 Opt. Lett. 36 460
[17] Spagnolo V, Dong L, Kosterev A A, Thomazy D, Doty J H, Tittel F K 2011 Appl. Phys. B 103 735
[18] Zheng H D, Dong L, Yin X K, Liu X L, Wu H P, Zhang L, Ma W G, Yin W B, Jia S T 2015 Sens. Actuators, B 208 173
[19] Kosterev A A, Tittel F K, Serebryakov D V, Malinovsky A L, Morozov I V 2005 Rev. Sci. Instrum. 76 043105
[20] Fritz A, Pitchon V 1997 Appl. Catal. B 13 1
[21] Liu K, Yi H M, Kosterev A A, Chen W D, Dong L, Wang L, Tan T, Zhang W J, Tittel F K, Gao X M 2010 Rev. Sci. Instrum 81 103103
[22] Dong L, Wright J, Peters B, Ferguson B A, Tittel F K, McWhorter S 2012 Appl. Phys. B 107 459
[23] Wysocki G, Kosterev A A, Tittel F K 2006 Appl. Phys. B 85 301
-
[1] Cao Y C, Jin W, Ho H L 2012 Sens. Actuators, B 174 24
[2] Shao J, Lathdavong L, Thavixay P, Axner O 2007 J. Opt. Soc. Am. B 24 2294
[3] Zhang Z Q, Ma B S, Jia S H 2013 Assembly and Manufacturing (ISAM) IEEE International Symposium 2013, p230
[4] Kosterev A A, Bakhirkin Y A, Curl R F, Tittel F K 2002 Opt. Lett. 27 1902
[5] Ma Y F, Lewicki R, Razeghi M, Tittel F K 2013 Opt. Express 21 1008
[6] Liu Y Y, Dong L, Wu H P, Zheng H D, Ma W G, Zhang L, Yin W B, Jia S T 2013 Acta Phys. Sin. 62 220701 (in Chinese) [刘妍研, 董磊, 武红鹏, 郑华丹, 马维光, 张雷, 尹王保, 贾锁堂 2013 62 220701]
[7] Wu H P, Dong L, Zheng H D, Liu Y Y, Ma W G, Zhang L, Wang W Y, Zhu Q K, Yin W B, Jia S T 2013 Acta Phys. Sin. 62 070701 (in Chinese) [武红鹏, 董磊, 郑华丹, 刘研研, 马维光, 张雷, 王五一, 朱庆科, 尹王保, 贾锁堂 2013 62 070701]
[8] Gong P, Xie L, Qi X Q, Wang R, Wang H, Chang M C, Yang H X, Sun F, Li G P 2015 Chin. Phys. B 24 014206
[9] Dong L, Kosterev A A, Thomazy D, Tittel F K 2010 Appl. Phys. B 100 627
[10] Liu K, Guo X Y, Yi H M, Chen W D, Zhang W J, Gao X M 2009 Opt. Lett. 34 1594
[11] Wu H P, Dong L, Ren W, Yin W B, Ma W G, Zhang L, Jia S T, Tittel F K 2015 Sens. Actuators, B 206 364
[12] Yi H M, Chen W D, Sun S W, Liu K, Tan T, Gao X M 2012 Opt. Express 20 9187
[13] Böttger S, Köhring M, Willer U, Schade W 2013 Appl. Phys. B 113 227
[14] Yi H M, Liu K, Chen W D, Tan T, Wang L, Gao X M 2011 Opt. Lett. 36 481
[15] Spagnolo V, Dong L, Kosterev A A, Tittel F K 2012 Opt. Express 20 3401
[16] Spagnolo V, Dong L, Kosterev A A, Thomazy D, Doty J H, Tittel F K 2011 Opt. Lett. 36 460
[17] Spagnolo V, Dong L, Kosterev A A, Thomazy D, Doty J H, Tittel F K 2011 Appl. Phys. B 103 735
[18] Zheng H D, Dong L, Yin X K, Liu X L, Wu H P, Zhang L, Ma W G, Yin W B, Jia S T 2015 Sens. Actuators, B 208 173
[19] Kosterev A A, Tittel F K, Serebryakov D V, Malinovsky A L, Morozov I V 2005 Rev. Sci. Instrum. 76 043105
[20] Fritz A, Pitchon V 1997 Appl. Catal. B 13 1
[21] Liu K, Yi H M, Kosterev A A, Chen W D, Dong L, Wang L, Tan T, Zhang W J, Tittel F K, Gao X M 2010 Rev. Sci. Instrum 81 103103
[22] Dong L, Wright J, Peters B, Ferguson B A, Tittel F K, McWhorter S 2012 Appl. Phys. B 107 459
[23] Wysocki G, Kosterev A A, Tittel F K 2006 Appl. Phys. B 85 301
计量
- 文章访问数: 6222
- PDF下载量: 204
- 被引次数: 0