-
非同轴激光雷达由于存在发射激光与接收望远镜之间的不完全重叠区, 造成近场回波信号与真实大气信号不一致. 对于多波长激光雷达, 这种不一致更为突出和复杂. 然而, 近场大气是人类活动最集中的区域, 因此对多波长激光雷达近场信号进行校正, 对于了解和探究边界层大气具有十分重要的意义. 提出了一种利用粒子谱仪测量近地层气溶胶尺度谱分布并运用Mie 散射理论和低层大气指数衰减规律, 进而直接校正多波长激光雷达消光系数廓线近场信号的新方法. 通过对晴天、多云天气和雾天多波长气溶胶消光系数廓线近场信号的校正, 证明了该方法的可行性和实用性. 该方法着重考虑了多波长激光雷达比的波长依赖性和气溶胶粒子谱分布的天气相关性, 将该方法用于近地层大气消光系数廓线校正, 减少了由于不考虑这两个因素带来的消光系数廓线反演和校正的不确定性. 该方法对于研究不同天气情况下边界层内的大气气溶胶物理、光学特性具有一定的实用价值和借鉴意义.The lidar observations of aerosols under near range condition are distorted because of insufficient overlapping between the transmitting laser beam and the field of view of receiving telescope in non-coaxial lidar especially in multiwavelength lidar. However, the near-range atmosphere is closely related with human’s activity. So it is important to correct the near-range signal of multiwavelength lidar. This paper presents a novel method of correcting the near-range optical parameter of multiwavelength lidar based on aerosol particle size distribution measurements and Mie scattering theory. The near-range aerosol extinction profiles on fine day, cloudy day and foggy day are corrected. The results show that the method is convenient and feasible compared with the traditional methods. This method reduces the uncertainty of inversion and correction because the wavelength dependences of lidar ratio and the weather correlation of aerosol size distribution are taken into account. This method realizes the direct correction to near-range optical parameter of multiwavelength lidar. It is favorable and convenient to study physical and optical properties of boundary layer atmosphere by using this method. It will have a broad application and prospect.
-
Keywords:
- multi-wavelength lidar /
- lidar ratio /
- aerosol /
- Mie scattering
[1] Sasano Y, Shimizu H, Takeuchi N, Okuda M 1979 Appl. Opt. 18 3908
[2] Tomine K, Hirayama C, Michimoto K, Takeuchi N 1989 Appl. Opt. 28 2194
[3] He Y H, Andrew Y S C, Cheng J, Zuo H Y, Yang J G 2005 Acta Opt. Sin. 25 289 (in Chinese) [贺应红, 郑玉臣, 程娟, 左浩毅, 杨经国 2005 光学学报 25 289]
[4] Wang Z H, He Y H, Zuo H Y, Andrew Y S C, Yang J G 2006 Acta Phys. Sin. 55 3188 (in Chinese) [王治华, 贺应红, 左浩毅, 郑玉臣, 杨经国 2006 55 3188]
[5] Liu Q J, Yang L, Wang J Y, Zuo H Y, Luo S R, Andrew Y S C 2009 Acta Phys. Sin. 58 7376 (in Chinese) [刘巧君, 杨林, 王劼予, 左浩毅, 罗时荣, 郑玉臣 2009 58 7376]
[6] Di H G, Hua D X, Wang Y F, Yan Q 2013 Acta Phys. Sin. 62 094215 (in Chinese) [狄慧鸽, 华灯鑫, 王玉峰, 闫庆 2013 62 094215]
[7] Wang W, Mao F Y, Gong W, Li J 2014 Acta Opt. Sin. 34 0228005 (in Chinese) [王威, 毛飞跃, 龚威, 李俊 2014 光学学报 34 0228005]
[8] 8 Klett J D 1981 Appl. Opt. 20 211
[9] Fan M, Chen L F, Li S S, Tao J H, Su L, Zou M M 2014 Chin. Phys. B 23 104203
[10] Du J, Ren D M, Zhao W J, Qu Y C, Chen Z L, Geng L J 2013 Chin. Phys. B 22 024211
[11] Valley S L 1965 Handbook of Geophysics and Space Environments (New York: McGraw-Hill Book Company) p27
-
[1] Sasano Y, Shimizu H, Takeuchi N, Okuda M 1979 Appl. Opt. 18 3908
[2] Tomine K, Hirayama C, Michimoto K, Takeuchi N 1989 Appl. Opt. 28 2194
[3] He Y H, Andrew Y S C, Cheng J, Zuo H Y, Yang J G 2005 Acta Opt. Sin. 25 289 (in Chinese) [贺应红, 郑玉臣, 程娟, 左浩毅, 杨经国 2005 光学学报 25 289]
[4] Wang Z H, He Y H, Zuo H Y, Andrew Y S C, Yang J G 2006 Acta Phys. Sin. 55 3188 (in Chinese) [王治华, 贺应红, 左浩毅, 郑玉臣, 杨经国 2006 55 3188]
[5] Liu Q J, Yang L, Wang J Y, Zuo H Y, Luo S R, Andrew Y S C 2009 Acta Phys. Sin. 58 7376 (in Chinese) [刘巧君, 杨林, 王劼予, 左浩毅, 罗时荣, 郑玉臣 2009 58 7376]
[6] Di H G, Hua D X, Wang Y F, Yan Q 2013 Acta Phys. Sin. 62 094215 (in Chinese) [狄慧鸽, 华灯鑫, 王玉峰, 闫庆 2013 62 094215]
[7] Wang W, Mao F Y, Gong W, Li J 2014 Acta Opt. Sin. 34 0228005 (in Chinese) [王威, 毛飞跃, 龚威, 李俊 2014 光学学报 34 0228005]
[8] 8 Klett J D 1981 Appl. Opt. 20 211
[9] Fan M, Chen L F, Li S S, Tao J H, Su L, Zou M M 2014 Chin. Phys. B 23 104203
[10] Du J, Ren D M, Zhao W J, Qu Y C, Chen Z L, Geng L J 2013 Chin. Phys. B 22 024211
[11] Valley S L 1965 Handbook of Geophysics and Space Environments (New York: McGraw-Hill Book Company) p27
计量
- 文章访问数: 7100
- PDF下载量: 265
- 被引次数: 0