搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非制冷红外探测器读出电路的非均匀性研究

袁红辉 陈永平

引用本文:
Citation:

非制冷红外探测器读出电路的非均匀性研究

袁红辉, 陈永平

Non-uniformity study on readout circuit for uncooled IR detector

Yuan Hong-Hui, Chen Yong-Ping
PDF
导出引用
  • 对于长线列的非制冷红外探测器组件, 不同探测元之间的非均匀性是衡量电路设计的关键指标. 为了实现长线列非制冷红外探测器的高性能读出, 本文设计了一种基于电流镜方式的非制冷红外探测器160线列读出电路, 电路由电流镜输入模块、电容负反馈互导放大器模块及相关双采样输出模块组成. 电路采用0.5 μm工艺制作完成. 通过合理设置电路中MOS管的参数和布局电流镜版图, 电路的非均匀性有了明显地改善. 通过测试, 电路的非均匀性小于1%, 器件总功耗约为100 mW, 并具有良好的低噪声特性, 输出噪声小于1 mV, 输出摆幅大于2 V. 该电路与160线列非制冷红外探测器互连后, 能较好地完成红外信号的读出, 在积分时间为20 μups的情况下, 器件的响应为0.294 mV/Ω, 整体性能良好. 该电路的研制对超长线列的非制冷红外冷探测器读出电路研制奠定了重要的技术基础.
    For long line uncooled infrared detectors, the non-uniformity of different detecting elements is the key parameter in measuring the circuit performance. So far there have been few research reports in this area. Most uncooled infrared detector circuits require corresponding blind detector for readout circuit design, which increases the complexity of uncooled infrared detector. In addition, the performances of these circuits need to be further improved in practical applications. In order to achieve high performance readout of the long line uncooled infrared detectors, a kind of 160 element readout circuit based on current mirror is designed in this paper. The readout circuit is composed of current mirror input part, capacitor feedback transimpedance amplifier (CTIA), and correlated double sampling (CDS) output circuit. The circuit is fabricated by using the 0.5 micron technology. The non-uniformity of circuit is obviously improved by reasonable parameter setting and current mirror circuit layout. Transconductance amplifier CTIA with capacitance negative feedback is used in the circuit. The integral capacitor consists of three capacitors whose capacitances are 10 pF, 20 pF and 20 pF respectively, thus the circuit can realize different integration capacitances, which forms different magnifications. The circuit can meet different response rates of uncooled detectors. Folded-cascode structure is adopted as the CMOS differential amplifier. The open loop gain is over 80 dB. This single-state folded-cascode construct can overcome the two-stage amplifier’s disadvantages, which easily leads to oscillations. The CDS N SF (source follow) and P SF are adopted as the circuit output, the output swing can easily be greater than 2 V. On average, the CDS N SF and P SF power consumptions are very low. So the total power consumption of 160 line circuit is lower than 100 mW. In the test, the non-uniformity of the readout circuit decreases from 10% to 1%. This result is in accordance with simulation result on non-uniformity. The other test results of total power consumption and the output amplitude also agree with simulation results. The readout circuit has good noise characteristics and the output noise is lower than 1 mV. When the readout circuit and uncooled infrared detector are connected, the infrared signal can be well read out. When the integration time is 20 μups, the device response is 0.294 mV/Ω. The overall system performance is very good. This circuit design based on current mirror has laid the technical foundation for developing readout circuit of the very large scale uncooled infrared detector in the future.
    • 基金项目: 中国科学院预研支撑项目(批准号:61501060305)资助的课题.
    • Funds: Project supported by China Academy of Sciences (Grant No. 61501060305).
    [1]

    Cao J M, Chen Z J, Lu W 2010 J. Infrared Millim. W. 29 97 (in Chinese) [曹君敏, 陈中建, 鲁文高 2010 红外与毫米波学报 29 97]

    [2]

    Qin L, Jiang Y D, Lu J 2006 Foreign Electronic Measurement Technology 25 32 (in Chinese) [秦良, 蒋亚东, 吕坚 2006 国外电子测量技术 25 32]

    [3]

    Yuan H H, Chen Y P 2014 Infrared and Laser Engineering 43 762 (in Chinese) [袁红辉, 陈永平 2014 红外与激光工程 43 762]

    [4]

    Liu M, Xu X F, Wang Y L 2013 Acta phys. Sin. 62 188501 (in Chinese) [刘明, 徐小峰, 王永良 2013 62 188501]

    [5]

    Zheng G F, Pei Y B, Wang X, Zheng J Y, Sun D H 2014 Chin. Phys. B 23 66102

    [6]

    Huang J, Zhao Q, Yang H, Dong J R, Zhang H Y 2013 Chin. Phys. B 22 127307

    [7]

    Chen Q, Yi X J, Yang Y, Yi L 2006 Int. J. Infrared Millim. W. 27 1281

    [8]

    Alam M S, Predina J P 2003 Opt. Eng. 42 3491

    [9]

    Weiler D, Hochschulz F, Wurfel D 2014 Infrared Technology and Applications XL, Baltimore MD USA May 5 2014 p90701

    [10]

    Ayers S, Gillis K D, Lindau M 2007 IEEE T. Circuits-I 54 736

    [11]

    Dsouza A I, Dawson L C, Staller C, Wijewar P S, Dewames R E, Mclevige W V 1997 J. Electron. Mater. 29 630

    [12]

    Yoon N Y, Kim B H, Lee H C, Kim C K 1999 Electron. Lett. 35 1507

    [13]

    Kulah H, Akin T 2003 IEEE T. Circuit-II 50 181

    [14]

    Lee I I 2010 Infrared Phys. Techn. 53 140

    [15]

    Hsieh C C, Wu C Y, Jih F W, Sun T P 1997 IEEE T. CIRC. SYST. VID. 7 594

    [16]

    Yu T H, Wu C Y, Chin Y C, Chen P Y, Chi F W, Luo J J 2000 IEEE International Symposium on Circuits and Systems, Geneva Switzerland, May 28-31, 2000 p493

    [17]

    Hsieh C C, Wu C Y, Sun T P, Jih F W, Cherng Y T 1998 IEEE J. SOLID-ST. CIRC. 33 1188

    [18]

    Sang G K, Doo H W, Hee C L 2005 IEEE T. CIRCUITS-II 52 553

    [19]

    Karim S K, Nathan A 2001 IEEE Electr. Device L. 22 469

    [20]

    Yuan H H, Yuan J H, Wang J H 2005 Chinese Journal of Semiconductors 26 790 (in Chinese) [袁红辉, 袁剑辉, 王京辉 2005 半导体学报 26 790]

    [21]

    Byunghpk K, Hee C L 2002 Electron. Lett. 38 854

    [22]

    Chen L L, Xi N, Chen H Z, King W C 2010 IEEE Nanotechnology Materials and Devices Conference, Monterey, California, USA, Oct12-15, 2010 p230

    [23]

    Bhan R K, Gopal V, Saxena R S, Singh J P 2004 Infrared Phys. Techn. 45 81

    [24]

    Hsieh C C, Wu C Y, Sun T P 1997 IEEE J. SOLID-ST. CIRC. 32 1192

    [25]

    Kumar S, Butler D 2009 IEEE SENS. J. 9 411

    [26]

    Yvon D, Sushkov V, Bernard R, Bret J L, Cahan B, Cloue O 2002 Nucl. Instrum. Meth. A 481 306

  • [1]

    Cao J M, Chen Z J, Lu W 2010 J. Infrared Millim. W. 29 97 (in Chinese) [曹君敏, 陈中建, 鲁文高 2010 红外与毫米波学报 29 97]

    [2]

    Qin L, Jiang Y D, Lu J 2006 Foreign Electronic Measurement Technology 25 32 (in Chinese) [秦良, 蒋亚东, 吕坚 2006 国外电子测量技术 25 32]

    [3]

    Yuan H H, Chen Y P 2014 Infrared and Laser Engineering 43 762 (in Chinese) [袁红辉, 陈永平 2014 红外与激光工程 43 762]

    [4]

    Liu M, Xu X F, Wang Y L 2013 Acta phys. Sin. 62 188501 (in Chinese) [刘明, 徐小峰, 王永良 2013 62 188501]

    [5]

    Zheng G F, Pei Y B, Wang X, Zheng J Y, Sun D H 2014 Chin. Phys. B 23 66102

    [6]

    Huang J, Zhao Q, Yang H, Dong J R, Zhang H Y 2013 Chin. Phys. B 22 127307

    [7]

    Chen Q, Yi X J, Yang Y, Yi L 2006 Int. J. Infrared Millim. W. 27 1281

    [8]

    Alam M S, Predina J P 2003 Opt. Eng. 42 3491

    [9]

    Weiler D, Hochschulz F, Wurfel D 2014 Infrared Technology and Applications XL, Baltimore MD USA May 5 2014 p90701

    [10]

    Ayers S, Gillis K D, Lindau M 2007 IEEE T. Circuits-I 54 736

    [11]

    Dsouza A I, Dawson L C, Staller C, Wijewar P S, Dewames R E, Mclevige W V 1997 J. Electron. Mater. 29 630

    [12]

    Yoon N Y, Kim B H, Lee H C, Kim C K 1999 Electron. Lett. 35 1507

    [13]

    Kulah H, Akin T 2003 IEEE T. Circuit-II 50 181

    [14]

    Lee I I 2010 Infrared Phys. Techn. 53 140

    [15]

    Hsieh C C, Wu C Y, Jih F W, Sun T P 1997 IEEE T. CIRC. SYST. VID. 7 594

    [16]

    Yu T H, Wu C Y, Chin Y C, Chen P Y, Chi F W, Luo J J 2000 IEEE International Symposium on Circuits and Systems, Geneva Switzerland, May 28-31, 2000 p493

    [17]

    Hsieh C C, Wu C Y, Sun T P, Jih F W, Cherng Y T 1998 IEEE J. SOLID-ST. CIRC. 33 1188

    [18]

    Sang G K, Doo H W, Hee C L 2005 IEEE T. CIRCUITS-II 52 553

    [19]

    Karim S K, Nathan A 2001 IEEE Electr. Device L. 22 469

    [20]

    Yuan H H, Yuan J H, Wang J H 2005 Chinese Journal of Semiconductors 26 790 (in Chinese) [袁红辉, 袁剑辉, 王京辉 2005 半导体学报 26 790]

    [21]

    Byunghpk K, Hee C L 2002 Electron. Lett. 38 854

    [22]

    Chen L L, Xi N, Chen H Z, King W C 2010 IEEE Nanotechnology Materials and Devices Conference, Monterey, California, USA, Oct12-15, 2010 p230

    [23]

    Bhan R K, Gopal V, Saxena R S, Singh J P 2004 Infrared Phys. Techn. 45 81

    [24]

    Hsieh C C, Wu C Y, Sun T P 1997 IEEE J. SOLID-ST. CIRC. 32 1192

    [25]

    Kumar S, Butler D 2009 IEEE SENS. J. 9 411

    [26]

    Yvon D, Sushkov V, Bernard R, Bret J L, Cahan B, Cloue O 2002 Nucl. Instrum. Meth. A 481 306

  • [1] 陈贝, 王小云, 刘涛, 高明, 文大东, 邓永和, 彭平. Pd-Si非晶合金动力学非均匀性的对称与有序.  , 2024, 73(24): . doi: 10.7498/aps.73.20241051
    [2] 张剑, 郝奇, 张浪渟, 乔吉超. 不同力学激励形式探索La基非晶合金微观结构非均匀性.  , 2024, 73(4): 046101. doi: 10.7498/aps.73.20231421
    [3] 陈志刚, 张伟君, 张兴雨, 王钰泽, 熊佳敏, 洪逸裕, 原蒲升, 吴玲, 王镇, 尤立星. 基于运算放大器的超导纳米线单光子探测器低温直流耦合读出电路.  , 2024, 73(13): 138501. doi: 10.7498/aps.73.20240398
    [4] 况丹, 徐爽, 史大为, 郭建, 喻志农. 基于铝纳米颗粒修饰的非晶氧化镓薄膜日盲紫外探测器.  , 2023, 72(3): 038501. doi: 10.7498/aps.72.20221476
    [5] 江双双, 朱力, 刘思楠, 杨詹詹, 兰司, 王寅岗. 局部塑性变形下铁基金属玻璃的致密化和非均匀性增强.  , 2022, 71(5): 058101. doi: 10.7498/aps.71.20211304
    [6] 江双双, 朱力, 刘思楠, 杨詹詹, 兰司, 王寅岗. 局部塑性变形下铁基金属玻璃的致密化和非均匀性增强.  , 2021, (): . doi: 10.7498/aps.70.20211304
    [7] 郭威, 杨德森. 非均匀波导中的最大声能流透射及鲁棒性分析.  , 2021, 70(17): 174302. doi: 10.7498/aps.70.20210495
    [8] 郭银, 舒碧芬, 汪婧, 杨晴川, 江景祥, 黄妍, 周正龙. 基于棱镜二次聚光的高倍聚光模组聚光特性与三结电池光谱响应匹配与优化.  , 2018, 67(10): 108801. doi: 10.7498/aps.67.20172778
    [9] 温志文, 祁辉荣, 王艳凤, 孙志嘉, 张余炼, 王海云, 张建, 欧阳群, 陈元柏, 李玉红. 二维多丝室探测器读出方法的优化.  , 2017, 66(7): 072901. doi: 10.7498/aps.66.072901
    [10] 管鹏飞, 王兵, 吴义成, 张珊, 尚宝双, 胡远超, 苏锐, 刘琪. 不均匀性:非晶合金的灵魂.  , 2017, 66(17): 176112. doi: 10.7498/aps.66.176112
    [11] 张金鹏, 张玉石, 吴振森, 张玉生, 胡荣旭. 基于雷达海杂波的区域性非均匀蒸发波导反演方法.  , 2015, 64(12): 124101. doi: 10.7498/aps.64.124101
    [12] 郑丽霞, 吴金, 张秀川, 涂君虹, 孙伟锋, 高新江. InGaAs单光子探测器传感检测与淬灭方式.  , 2014, 63(10): 104216. doi: 10.7498/aps.63.104216
    [13] 刘明, 徐小峰, 王永良, 曾佳, 李华, 邱阳, 张树林, 张国峰, 孔祥燕, 谢晓明. 超导量子干涉器件读出电路中匹配变压器的传输特性研究.  , 2013, 62(18): 188501. doi: 10.7498/aps.62.188501
    [14] 黄瑾, 钟中, 郭维栋, 卢伟. 非均匀地表空气动力学有效粗糙度的统计特征.  , 2013, 62(5): 054204. doi: 10.7498/aps.62.054204
    [15] 张强, 李宏宇. 黄土高原地表能量不闭合度与垂直感热平流的关系.  , 2010, 59(8): 5888-5895. doi: 10.7498/aps.59.5888
    [16] 欧阳晓平, 李真富, 张国光, 霍裕昆, 张前美, 张显鹏, 宋献才, 贾焕义, 雷建华, 孙远程. 电流型大面积PIN探测器.  , 2002, 51(7): 1502-1505. doi: 10.7498/aps.51.1502
    [17] 王大威, 刘婷婷, 杨宏, 蒋红兵, 龚旗煌. 介质的非均匀性对高次谐波影响的研究.  , 2002, 51(9): 2034-2037. doi: 10.7498/aps.51.2034
    [18] 陈长虹, 易新建, 熊笔锋. 基于VO2薄膜非致冷红外探测器光电响应研究.  , 2001, 50(3): 450-452. doi: 10.7498/aps.50.450
    [19] 潘传红. 非均匀等离子体中rf波电流驱动理论.  , 1987, 36(3): 284-292. doi: 10.7498/aps.36.284
    [20] 陆学善, 梁敬魁. 德拜特征温度的各向异性与非均匀性.  , 1981, 30(11): 1498-1507. doi: 10.7498/aps.30.1498
计量
  • 文章访问数:  6589
  • PDF下载量:  202
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-02
  • 修回日期:  2015-01-11
  • 刊出日期:  2015-06-05

/

返回文章
返回
Baidu
map