-
利用基于大气边界层Monin-Obukhov相似理论、通量守恒和质量守恒原理设计的非均匀地表空气动力学有效粗糙度计算方案, 研究了3种不同地表类型情况下有效粗糙度的统计特征, 并分析了大气层结稳定度和粗糙变率对有效粗糙度的影响. 结果表明, 有效粗糙度总是大于面积加权平均粗糙度, 大部分情况下有效拖曳系数比平均拖曳系数大10%以上; 有效粗糙度虽然和大气层结稳定度有关, 但对粗糙变率更敏感, 粗糙变率加倍将使有效粗糙度相对变化百分比达到加倍前的4倍, 有效拖曳系数相对变化百分比达到加倍前的3倍. 因此, 非均匀下垫面的数值模式中, 不能简单地采用面积加权平均粗糙度, 需要采用能表示下垫面非均匀性综合效应的有效粗糙度.With a new scheme of effective roughness length for heterogeneous terrain, based on the atmospheric boundary layer Monin-Obukhov similarity theory as well as flux and mass conservation principles, the statistical features of effective roughness length and its sensitivity to atmospheric stratification stability and roughness step for three surface category case are investigated. The results show that the effective roughness length is greater than the area-weighted logarithmic average one and the effective drag coefficient is more than 10% greater than the average one in most cases. The effective roughness length is much more sensitive to the roughness step, though it is dependent on the atmospheric stratification stability, and the relative percentage of effective roughness length and the effective drag coefficient will be 4 times and 3 times, respectively, for the double roughness step case. Therefore, the area-weighted average roughness length should be replaced by the effective one when the surface heterogeneity is considered in numerical models, which can represent the integrated effect of heterogeneous terrain.
[1] Sud Y C, Smith W E 1985 Bound. Lay. Meteorol. 33 1
[2] Sud Y C, Shukla J, Mintz Y 1988 J. Appl. Meteorol. 27 1036
[3] Hao P F, Yao Z H, He F 2007 Acta Phys. Sin. 56 4728 (in Chinese) [郝鹏飞, 姚朝晖, 何枫 2007 56 4728]
[4] Zhang C B, Chen Y P, Shi M H, Fu P P, Wu J F 2009 Acta Phys. Sin. 58 7050 (in Chinese) [张程宾, 陈永平, 施明恒, 付盼盼, 吴嘉峰 2009 58 7050]
[5] Li H Q, Guo W D, Sun G D, Zhang Y C 2011 Acta Phys. Sin. 60 019201 (in Chinese) [李红祺, 郭维栋, 孙国栋, 张耀存 2011 60 019201]
[6] André J C, Blondin C 1986 Bound. Lay. Meteorol. 35 231
[7] Taylor P A 1987 Bound. Lay. Meteorol. 39 403
[8] Lhomme J P, Chehbouni A, Monteny B 1994 Bound. Lay. Meteorol. 71 297
[9] Hasager C B, Jensen N O 1999 Quater. J. Roy. Meteorol. Soc. 125 2075
[10] Bou-Zeid E, Meneveau C, Parlange M B 2004 Water Resour. Res. 40 W02505
[11] Bou-Zeid E, Parlange M B, Meneveau C 2007 J. Atmos. Sci. 64 216
[12] Zhong Z, Lu W, Song S, Zhang Y 2011 J. Hydrometeor. 12 1610
[13] Jiménez P A, Dudhia J 2012 J. Appl. Meteorol. Climatol. 51 300
[14] Businger J A, Wyngaard J C, Izumi Y, Badgley E F 1971 J. Atmos. Sci. 28 181
[15] Byun D W 1990 J. Appl. Meteorol. 29 652
[16] Lo A K 1995 Bound. Lay. Meteorol. 75 381
[17] Kirk-Davidoff D B, Keith D W 2008 J. Atmos. Sci. 65 2215
[18] Zhong Z, Zhao M, Su B K, Tang J P 2003 Adv. Atmos. Sci. 20 71
-
[1] Sud Y C, Smith W E 1985 Bound. Lay. Meteorol. 33 1
[2] Sud Y C, Shukla J, Mintz Y 1988 J. Appl. Meteorol. 27 1036
[3] Hao P F, Yao Z H, He F 2007 Acta Phys. Sin. 56 4728 (in Chinese) [郝鹏飞, 姚朝晖, 何枫 2007 56 4728]
[4] Zhang C B, Chen Y P, Shi M H, Fu P P, Wu J F 2009 Acta Phys. Sin. 58 7050 (in Chinese) [张程宾, 陈永平, 施明恒, 付盼盼, 吴嘉峰 2009 58 7050]
[5] Li H Q, Guo W D, Sun G D, Zhang Y C 2011 Acta Phys. Sin. 60 019201 (in Chinese) [李红祺, 郭维栋, 孙国栋, 张耀存 2011 60 019201]
[6] André J C, Blondin C 1986 Bound. Lay. Meteorol. 35 231
[7] Taylor P A 1987 Bound. Lay. Meteorol. 39 403
[8] Lhomme J P, Chehbouni A, Monteny B 1994 Bound. Lay. Meteorol. 71 297
[9] Hasager C B, Jensen N O 1999 Quater. J. Roy. Meteorol. Soc. 125 2075
[10] Bou-Zeid E, Meneveau C, Parlange M B 2004 Water Resour. Res. 40 W02505
[11] Bou-Zeid E, Parlange M B, Meneveau C 2007 J. Atmos. Sci. 64 216
[12] Zhong Z, Lu W, Song S, Zhang Y 2011 J. Hydrometeor. 12 1610
[13] Jiménez P A, Dudhia J 2012 J. Appl. Meteorol. Climatol. 51 300
[14] Businger J A, Wyngaard J C, Izumi Y, Badgley E F 1971 J. Atmos. Sci. 28 181
[15] Byun D W 1990 J. Appl. Meteorol. 29 652
[16] Lo A K 1995 Bound. Lay. Meteorol. 75 381
[17] Kirk-Davidoff D B, Keith D W 2008 J. Atmos. Sci. 65 2215
[18] Zhong Z, Zhao M, Su B K, Tang J P 2003 Adv. Atmos. Sci. 20 71
计量
- 文章访问数: 6803
- PDF下载量: 589
- 被引次数: 0