搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多相组重建的航空图像超分辨率算法

何林阳 刘晶红 李刚

引用本文:
Citation:

基于多相组重建的航空图像超分辨率算法

何林阳, 刘晶红, 李刚

Super resolution of aerial image by means of polyphase components reconstruction

He Lin-Yang, Liu Jing-Hong, Li Gang
PDF
导出引用
  • 为提高航空图像的空间分辨率, 提出一种基于多相组重建的超分辨率算法. 融合图像间的互补信息, 将多帧低分辨率图像作为图像基, 参考帧分解为多相组, 利用差异采样特性构建图像基与参考帧之间的的多相组线性关系重建得到高分辨率图像的多项组, 经图像多相分解逆变换获得融合的高分辨率图像. 根据该融合图像的局部内容和结构信息自适应调整控制核核函数, 应用改进的控制核回归算法去除图像模糊和噪声得到清晰的超分辨率图像. 与传统算法相比, 该算法无需图像配准和迭代过程, 计算效率极大地提高. 实验结果表明, 本文算法能够有效提高航空图像的空间分辨率, 在定量评价指标和主观视觉效果方面都有显著提高.
    Multi-frame super resolution reconstruction is a technology for obtaining a high resolution image from a set of blurred and aliased low resolution images. The most popular and widely used super resolution methods are motion based. However, the estimation of motion information (registration) is very difficult, computationally expensive and inaccurate, especially for aerial image. The sub-pixel registration error restricts the performance of the subsequent super resolution. Instead of trying to parameterize the motion estimation model, this paper proposes an image super resolution framework based on the polyphase components reconstruction algorithm and an improved steering kernel regression algorithm. Given an image observation model, a reversible 2D polyphase decomposition, which breaks down a high resolution image into polyphase components, is obtained. Though the assumption of diversity sampling, this paper adopts a fundamentally different approach, in which the low-resolution frames is used as the basis and the reference frame as the reference sub-polyphase component of the high resolution image for recovering the polyphase components of the high resolution image. The polyphase components, which fuse the low resolution frames with the complementary details, can be obtained by computing their expansion coefficients in terms of this basis using the available sub-polyphase components and then inversely transforming them into a high resolution image. This paper accomplishes this by formulating the problem as the maximum likelihood estimation, which guarantees a close-to-perfect solution. Furthermore, this paper proposes an improved steering kernel regression algorithm, to help restore the fusion image with mild blur and random noise. This paper adaptively refines the steering kernel regression function according to the local region context and structures. Thus, this new algorithm not only effectively combines denoising and deblurring together, but also preserves the edge information. Our framework develops an efficient and stable algorithm to tackle the huge size and ill-posedness of the super resolution problem, and improves the computational efficiency via avoiding registration and iterative computation. Several experimental results on synthetic data illustrate that our method outperforms the state-of-the-art methods in quantitative and qualitative comparisons. The proposed super resolution algorithm can indeed reconstruct high-frequency information which is otherwise unavailable in the single LR image. It can effectively suppress blur and noise, and produce visually pleasing resolution enhancement in aerial images.
    • 基金项目: 国家自然科学基金(批准号:60902067)和吉林省重大科技攻关项目(批准号:11ZDGG001)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 60902067), and the Key Programs for Science and Technology Development of Jilin Province, China (Grant No. 11ZDGG001).
    [1]

    Park S C, Park M K, Kang M G 2003 IEEE Signal Proc. Mag. 20 21

    [2]

    Deng C Z, Tian W, Wang S Q, Zhu H S, Wu C M, Xiong Z W, Zhong W 2014 Opt. Precision Eng. 22 1648 (in Chinese) [邓承志, 田伟, 汪胜前, 朱华生, 吴朝明, 熊志文, 钟威 2014光学精密工程 22 1648]

    [3]

    Ruan Q Q 2005 Physics 34 1 (in Chinese) [阮秋琦2005 物理 34 1]

    [4]

    Farsiu S, Robinson D 2004 IEEE Trans. Image Process. 13 1327

    [5]

    Peng Z M, Jing L, He Y M, Zhang P 2014 Opt. Precision Eng. 22 169 (in Chinese) [彭真明, 景亮, 何燕敏, 张萍 2014光学精密工程 22 169]

    [6]

    Yang W B, Zhu M, Liu Z M, Chen D C 2014 Opt. Precision Eng. 22 2247 (in Chinese) [杨文波, 朱明, 刘志明, 陈东成 2014光学精密工程 22 2247]

    [7]

    Tekalp A, Ozkan M, Sezan M 1992 Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing San Francisco, USA, March 23-26, 1992 p169

    [8]

    Tsai R Y, Huang T S 1984 Adv. Comput. Vis. Image Process. 1 317

    [9]

    Chen Y N, Jin W Q, Zhao L, Zhao L 2009 Acta Phys. Sin. 58 264 (in Chinese) [陈翼男, 金伟其, 赵磊, 赵琳 2009 58 264]

    [10]

    Su B H, Jin W Q, Niu L H, Liu G R, Liu M Q 2001 Acta Photon. Sin. 3 492 (in Chinese) [苏秉华, 金伟其, 牛丽红, 刘广荣, 刘明奇2001光子学报 3 492]

    [11]

    Tom B C, Katsaggelos A K 1996 Proceedings of SPIE Conference of Visual Communications and Image Processing Lausanne, Switzerland 1996 p1430

    [12]

    Zhou S B, Yuan Y, Su L J 2013 Acta Phys. Sin. 62 130701 (in Chinese) [周树波, 原燕, 苏丽娟 2013 62 130701]

    [13]

    Peyman M 2011 Super Resolution Imaging (Vol. 1) (New York:Benjamin) pp1-23

    [14]

    Gong W G, Pan F Y, Li J M 2014 Opt. Precision Eng. 22 721 (in Chinese) [龚卫国, 潘飞宇, 李进明 2014光学精密工程 22 721]

    [15]

    Liu H C, Li S T, Yin H T 2013 Opt. Commun. 289 45

    [16]

    Deng C Z, Tian W, Chen P, Wang S Q, Zhu H S, Hu S F, 2014 Acta Phys. Sin. 63 044202 in Chinese 2014 63 044202 (in Chinese) [邓承志, 田伟, 陈盼, 汪胜前, 朱华生, 胡赛凤 2014 63 044202]

    [17]

    Alam M S, Bognar J G, Hardie R C 2000 IEEE Trans. Instrum. 49 915

    [18]

    Filip S, Gabriel C, Jan F 2006 IEEE Trans. Image Process. 16 9

    [19]

    Fasal M A 2010 Ph. D. Dissertation (Ann Arbor:University of Michigan)

    [20]

    Hiroyuki T, Sina F, Peyman M 2007 IEEE Trans. Image Process. 16 349

    [21]

    Kim S Y, Cho W, Koschan A, Abidi M A 2011 Proceedings of the 7th International Symposium on Visual Computing LasVegas, Nevada, September 26-28, 2011 p291

    [22]

    Antigoni P, Vassilis A 2009 Opt. Eng. 48 117004

    [23]

    Yang J, Wright J, Huang T 2010 IEEE Trans. Image Process. 19 2861

  • [1]

    Park S C, Park M K, Kang M G 2003 IEEE Signal Proc. Mag. 20 21

    [2]

    Deng C Z, Tian W, Wang S Q, Zhu H S, Wu C M, Xiong Z W, Zhong W 2014 Opt. Precision Eng. 22 1648 (in Chinese) [邓承志, 田伟, 汪胜前, 朱华生, 吴朝明, 熊志文, 钟威 2014光学精密工程 22 1648]

    [3]

    Ruan Q Q 2005 Physics 34 1 (in Chinese) [阮秋琦2005 物理 34 1]

    [4]

    Farsiu S, Robinson D 2004 IEEE Trans. Image Process. 13 1327

    [5]

    Peng Z M, Jing L, He Y M, Zhang P 2014 Opt. Precision Eng. 22 169 (in Chinese) [彭真明, 景亮, 何燕敏, 张萍 2014光学精密工程 22 169]

    [6]

    Yang W B, Zhu M, Liu Z M, Chen D C 2014 Opt. Precision Eng. 22 2247 (in Chinese) [杨文波, 朱明, 刘志明, 陈东成 2014光学精密工程 22 2247]

    [7]

    Tekalp A, Ozkan M, Sezan M 1992 Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing San Francisco, USA, March 23-26, 1992 p169

    [8]

    Tsai R Y, Huang T S 1984 Adv. Comput. Vis. Image Process. 1 317

    [9]

    Chen Y N, Jin W Q, Zhao L, Zhao L 2009 Acta Phys. Sin. 58 264 (in Chinese) [陈翼男, 金伟其, 赵磊, 赵琳 2009 58 264]

    [10]

    Su B H, Jin W Q, Niu L H, Liu G R, Liu M Q 2001 Acta Photon. Sin. 3 492 (in Chinese) [苏秉华, 金伟其, 牛丽红, 刘广荣, 刘明奇2001光子学报 3 492]

    [11]

    Tom B C, Katsaggelos A K 1996 Proceedings of SPIE Conference of Visual Communications and Image Processing Lausanne, Switzerland 1996 p1430

    [12]

    Zhou S B, Yuan Y, Su L J 2013 Acta Phys. Sin. 62 130701 (in Chinese) [周树波, 原燕, 苏丽娟 2013 62 130701]

    [13]

    Peyman M 2011 Super Resolution Imaging (Vol. 1) (New York:Benjamin) pp1-23

    [14]

    Gong W G, Pan F Y, Li J M 2014 Opt. Precision Eng. 22 721 (in Chinese) [龚卫国, 潘飞宇, 李进明 2014光学精密工程 22 721]

    [15]

    Liu H C, Li S T, Yin H T 2013 Opt. Commun. 289 45

    [16]

    Deng C Z, Tian W, Chen P, Wang S Q, Zhu H S, Hu S F, 2014 Acta Phys. Sin. 63 044202 in Chinese 2014 63 044202 (in Chinese) [邓承志, 田伟, 陈盼, 汪胜前, 朱华生, 胡赛凤 2014 63 044202]

    [17]

    Alam M S, Bognar J G, Hardie R C 2000 IEEE Trans. Instrum. 49 915

    [18]

    Filip S, Gabriel C, Jan F 2006 IEEE Trans. Image Process. 16 9

    [19]

    Fasal M A 2010 Ph. D. Dissertation (Ann Arbor:University of Michigan)

    [20]

    Hiroyuki T, Sina F, Peyman M 2007 IEEE Trans. Image Process. 16 349

    [21]

    Kim S Y, Cho W, Koschan A, Abidi M A 2011 Proceedings of the 7th International Symposium on Visual Computing LasVegas, Nevada, September 26-28, 2011 p291

    [22]

    Antigoni P, Vassilis A 2009 Opt. Eng. 48 117004

    [23]

    Yang J, Wright J, Huang T 2010 IEEE Trans. Image Process. 19 2861

  • [1] 相萌, 何飘, 王天宇, 袁琳, 邓凯, 刘飞, 邵晓鹏. 计算偏振彩色傅里叶叠层成像: 散射光场偏振特性的复用技术.  , 2024, 73(12): 124202. doi: 10.7498/aps.73.20240268
    [2] 陈松懋, 苏秀琴, 郝伟, 张振扬, 汪书潮, 朱文华, 王杰. 基于光子计数激光雷达的自适应门控抑噪及三维重建算法.  , 2022, 71(10): 104202. doi: 10.7498/aps.71.20211697
    [3] 隋怡晖, 郭星奕, 郁钧瑾, Alexander A. Solovev, 他得安, 许凯亮. 生成对抗网络加速超分辨率超声定位显微成像方法研究.  , 2022, 71(22): 224301. doi: 10.7498/aps.71.20220954
    [4] 郁钧瑾, 郭星奕, 隋怡晖, 宋剑平, 他得安, 梅永丰, 许凯亮. 超分辨率超快超声脊髓微血管成像方法.  , 2022, 71(17): 174302. doi: 10.7498/aps.71.20220629
    [5] 陈洁, 周昕, 白星, 李聪, 徐昭, 倪洋. 强散射过程与双随机相位加密过程的等价性分析.  , 2021, 70(13): 134201. doi: 10.7498/aps.70.20201903
    [6] 孙世峰. 基于可分离编码的高分辨X射线荧光成像技术研究.  , 2020, 69(19): 198701. doi: 10.7498/aps.69.20200674
    [7] 乔志伟. 总变差约束的数据分离最小图像重建模型及其Chambolle-Pock求解算法.  , 2018, 67(19): 198701. doi: 10.7498/aps.67.20180839
    [8] 龚志双, 王秉中, 王任, 臧锐, 王晓华. 基于光栅结构的远场时间反演亚波长源成像.  , 2017, 66(4): 044101. doi: 10.7498/aps.66.044101
    [9] 杜劲松, 高扬, 毕欣, 齐伟智, 黄林, 荣健. S波段微波热致超声成像系统研究.  , 2015, 64(3): 034301. doi: 10.7498/aps.64.034301
    [10] 韩玉, 李磊, 闫镔, 席晓琦, 胡国恩. 一种基于Radon逆变换的半覆盖螺旋锥束CT重建算法.  , 2015, 64(5): 058704. doi: 10.7498/aps.64.058704
    [11] 邓承志, 田伟, 陈盼, 汪胜前, 朱华生, 胡赛凤. 基于局部约束群稀疏的红外图像超分辨率重建.  , 2014, 63(4): 044202. doi: 10.7498/aps.63.044202
    [12] 王胜, 邹宇斌, 温伟伟, 李航, 刘树全, 王浒, 陆元荣, 唐国有, 郭之虞. 基于小型加速器的编码中子源成像研究.  , 2013, 62(12): 122801. doi: 10.7498/aps.62.122801
    [13] 梁木生, 王秉中, 章志敏, 丁帅, 臧锐. 基于远场时间反演的亚波长天线阵列研究.  , 2013, 62(5): 058401. doi: 10.7498/aps.62.058401
    [14] 汪先超, 闫镔, 刘宏奎, 李磊, 魏星, 胡国恩. 一种圆轨迹锥束CT中截断投影数据的高效重建算法.  , 2013, 62(9): 098702. doi: 10.7498/aps.62.098702
    [15] 杨昆, 刘新新, 李晓苇. 数据插值对正电子发射断层成像设备的图像重建影响的研究.  , 2013, 62(14): 147802. doi: 10.7498/aps.62.147802
    [16] 宁方立, 何碧静, 韦娟. 基于lp范数的压缩感知图像重建算法研究.  , 2013, 62(17): 174212. doi: 10.7498/aps.62.174212
    [17] 周树波, 袁艳, 苏丽娟. 基于双阈值Huber范数估计的图像正则化超分辨率算法.  , 2013, 62(20): 200701. doi: 10.7498/aps.62.200701
    [18] 陈英明, 王秉中, 葛广顶. 微波时间反演系统的空间超分辨率机理.  , 2012, 61(2): 024101. doi: 10.7498/aps.61.024101
    [19] 葛广顶, 王秉中, 黄海燕, 郑罡. 时间反演电磁波超分辨率特性.  , 2009, 58(12): 8249-8253. doi: 10.7498/aps.58.8249
    [20] 张海涛, 巩马理, 赵达尊, 闫平, 崔瑞祯, 贾维溥. 实现超分辨率的微变焦法.  , 2001, 50(8): 1486-1491. doi: 10.7498/aps.50.1486
计量
  • 文章访问数:  6214
  • PDF下载量:  221
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-23
  • 修回日期:  2014-12-16
  • 刊出日期:  2015-06-05

/

返回文章
返回
Baidu
map