-
波束域变换将阵元域数据投影到一个低维的波束域空间, 不仅能够减小信号处理算法的运算时间, 提高算法性能, 还能够抑制干扰. 本文针对常规自适应波束域变换方法需要在线调整波束变换矩阵、更新波束域导向矢量由此导致实时实现困难的问题, 提出一种高效的自适应波束域变换方法. 该方法将波束域协方差矩阵与导向矢量均表示成不依赖自适应波束变换矩阵的闭合形式, 省去在线调整与更新过程, 使运算效率得到了显著提高. 最后将该方法应用到波达方向(DOA)的估计之中, 仿真研究表明, 本文方法获得了比常规自适应方法更好的DOA估计性能. 此外, 本文方法还具有另一个非常突出的优点, 即它可以有效抑制运动强干扰. 这是因为本文方法无需训练波束变换矩阵, 其当前运算结果与历史快拍数据无关, 这样可以有效避免常规自适应方法中因目标运动所导致的训练数据与应用数据失配的问题.Beam-space transformation projects the array data into a lower space, which is not only effective in reducing computation time, improving performance, but also being capable to suppress interference. In contrast to conventional adaptive beam-space transformation method, which often requires adjusting the beam-space matrix and steering vectors online, an efficient adaptive beam-space transformation method is proposed. In the proposed method, the beam-space covariance matrix and the steering vector both have closed-forms, and do not depend on the adaptive beam-space matrix. This eliminates the online adjustment process, and, thus, improves the computational efficiency. Finally, the proposed method can also be applied to the direction of arrival (DOA) estimation. Simulation results demonstrate that it has a better DOA estimation performance than the conventional adaptive method. Furthermore, the proposed method also has another significant advantage, i.e., it is able to suppress moving interference. This can be ascribed to the proposed beam-space matrix which is independent of the historical data, and, thus, effective to avoid the mismatch between the training and application data, since this mismatch often occurs in conventional adaptive methods.
-
Keywords:
- adaptive beam-space transformation /
- beam-space matrix /
- direction of arrival estimation /
- moving interference suppression
[1] Van T H 2002 Optimum Array Processing (3rd Ed.) (New York: Wiley) p575
[2] Lu L, Ji X L, Deng J P, Li X Q 2014 Chin. Phys. B 23 064209
[3] Liang G L, Ma W, Fan Z, Wang Y L 2013 Acta Phys. Sin. 62 144302 (in Chinese) [梁国龙, 马巍, 范展, 王逸林 2013 62 144302]
[4] Shi J, Yang D S, Shi S G 2012 Acta Phys. Sin. 61 124302 (in Chinese) [时洁, 杨德森, 时胜国 2012 61 124302]
[5] Forster P, Vezzosi G 1987 Proc. Int. Conf. Acoustics, Speech, Signal Processing (ICASSP) Dallas, TX, Apr. 6-9, 1987 p2268
[6] Aboulnasr H, Sherif A E, Alex B G, Kon M W 2006 IEEE Trans. Signal Process. 54 1587
[7] Wei L, Stephan W 2010 Wideband Beamforming : Concepts and Techniques(New York: Wiley) p188
[8] Yang T, Su T, He X H 2013 Journal of Electronics & Information Technology 37 2758 (in Chinese) [杨涛, 苏涛, 何学辉 2013 电子与信息学报 37 2758]
[9] Zhi W J, Yan S G, Li Z S 2002 Acta Acoustica Sin. 27 133 (in Chinese) [智婉君, 严胜刚, 李智舜 2002 声学学报 27 133]
[10] Wang Y, Wu W F, Fan Z, Liang G L 2013 Acta Phys. Sin. 62 184302 (in Chinese) [王燕, 吴文峰, 范展, 梁国龙 2013 62 184302]
[11] Lin B Q, Zhao S H, Wei W, Da X Y, Zheng Q R, Zhang H Y, Zhu M 2014 Chin. Phys. B 23 024201
[12] Wang Y Q, Ye J S, Liu S T, Zhang Y 2013 Chin. Phys. B 22 114202
[13] Zeng Y H, Liang Y C 2009 IEEE Trans. Commun. 56 1784
[14] Lorenz R, Boyd S 2005 IEEE Trans. Signal Process. 53 1684
[15] Boyd S, Vandenberghe L 2004 Convex Optimization (1st Ed.) (Cambridge: Cambridge University Press) p125
[16] Zhang X D 2004 Matrix Analysis and Applications (Beijing: Tsinghua University Press) p262 (in Chinese) [张贤达 2004 矩阵分析与应用(北京:清华大学出版社) 第262页]
-
[1] Van T H 2002 Optimum Array Processing (3rd Ed.) (New York: Wiley) p575
[2] Lu L, Ji X L, Deng J P, Li X Q 2014 Chin. Phys. B 23 064209
[3] Liang G L, Ma W, Fan Z, Wang Y L 2013 Acta Phys. Sin. 62 144302 (in Chinese) [梁国龙, 马巍, 范展, 王逸林 2013 62 144302]
[4] Shi J, Yang D S, Shi S G 2012 Acta Phys. Sin. 61 124302 (in Chinese) [时洁, 杨德森, 时胜国 2012 61 124302]
[5] Forster P, Vezzosi G 1987 Proc. Int. Conf. Acoustics, Speech, Signal Processing (ICASSP) Dallas, TX, Apr. 6-9, 1987 p2268
[6] Aboulnasr H, Sherif A E, Alex B G, Kon M W 2006 IEEE Trans. Signal Process. 54 1587
[7] Wei L, Stephan W 2010 Wideband Beamforming : Concepts and Techniques(New York: Wiley) p188
[8] Yang T, Su T, He X H 2013 Journal of Electronics & Information Technology 37 2758 (in Chinese) [杨涛, 苏涛, 何学辉 2013 电子与信息学报 37 2758]
[9] Zhi W J, Yan S G, Li Z S 2002 Acta Acoustica Sin. 27 133 (in Chinese) [智婉君, 严胜刚, 李智舜 2002 声学学报 27 133]
[10] Wang Y, Wu W F, Fan Z, Liang G L 2013 Acta Phys. Sin. 62 184302 (in Chinese) [王燕, 吴文峰, 范展, 梁国龙 2013 62 184302]
[11] Lin B Q, Zhao S H, Wei W, Da X Y, Zheng Q R, Zhang H Y, Zhu M 2014 Chin. Phys. B 23 024201
[12] Wang Y Q, Ye J S, Liu S T, Zhang Y 2013 Chin. Phys. B 22 114202
[13] Zeng Y H, Liang Y C 2009 IEEE Trans. Commun. 56 1784
[14] Lorenz R, Boyd S 2005 IEEE Trans. Signal Process. 53 1684
[15] Boyd S, Vandenberghe L 2004 Convex Optimization (1st Ed.) (Cambridge: Cambridge University Press) p125
[16] Zhang X D 2004 Matrix Analysis and Applications (Beijing: Tsinghua University Press) p262 (in Chinese) [张贤达 2004 矩阵分析与应用(北京:清华大学出版社) 第262页]
计量
- 文章访问数: 7197
- PDF下载量: 728
- 被引次数: 0