搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Bi0.8Ba0.2FeO3/La0.7Sr0.3MnO3异质结制备及其交换偏置效应研究

魏纪周 张铭 邓浩亮 楚上杰 杜敏永 严辉

引用本文:
Citation:

Bi0.8Ba0.2FeO3/La0.7Sr0.3MnO3异质结制备及其交换偏置效应研究

魏纪周, 张铭, 邓浩亮, 楚上杰, 杜敏永, 严辉

Preparation and exchange bias effects of Bi0.8Ba0.2FeO3/La0.7Sr0.3MnO3 heterostructures

Wei Ji-Zhou, Zhang Ming, Deng Hao-Liang, Chu Shang-Jie, Du Min-Yong, Yan Hui
PDF
导出引用
  • 采用脉冲激光沉积方法, 通过调节激光能量、激光频率、衬底温度、氧压、靶基距等工艺参数, 在(100)取向的铝酸镧单晶衬底上制备出Bi0.8Ba0.2FeO3/La0.7Sr0.3MnO3多铁性异质结. X射线衍射图谱表明薄膜呈钙钛矿结构, 高分辨透射电镜图谱和能量色散X射线图谱表明两相界面清晰且具有良好的匹配度, 异质结呈(00l)取向性生长. 加场冷却条件下不同温度的磁滞回线(M-H)测量结果表明样品具有明显的交换偏置效应, 交换偏置场(HEB)随温度的线性变化可能与异质结界面处电子轨道的重构和界面处自旋、轨道自由度之间的复杂的相互作用有关.
    Bi0.8Ba0.2FeO3/La0.7Sr0.3MnO3 multiferroic heterostructures are successfully synthesized on single crystal LaAlO3(100) substrates by pulsed laser deposition via adjusting the parameters of laser energy, laser frequency, substrate temperature, oxygen pressure, distance between substrate and target, etc. The pure phase with perovskite structure is confirmed by the X-ray diffraction measurements. Using high-resolution transmission electron microscopy and energy dispersive X-Ray spectroscopy, we find that all the layers show preferential (00l) orientation, suggesting the epitaxial growth of the multilayered structure. Isothermal (7 K) M-H curves measured on sample after cooling the sample down to lower than ± 1 T fields reveal a shift in M-H loop. The strong temperature dependence of HEB is likely to be directly related to an electronic orbital reconstruction at the interface and complex interplay between orbital and spin degrees of freedom.
    • 基金项目: 国家自然科学基金(批准号: 11174021)和北京市自然科学基金(批准号: 2122007)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11174021) and the Natural Science Foundation of Beijing, China (Grant No. 2122007).
    [1]

    Valencia S, Crassous A, Bocher L, Garcia V, Moya X, Cherifi R O, Deranlot C, Bouzehouane K, Fusil S, Zobelli A, Gloter A, Mathur N D, Gaupp A, Abrudan R, Radu F, Barthélémy A, Bibes M 2011 Nat. Mater. 10 753

    [2]

    Chakhalian J, Freeland J W, Habermeier H U, Cristiani G, Khaliullin G, van Veenendaal M, Keimer B 2007 Science 318 1114

    [3]

    Ohtomo A, Hwang H Y 2004 Nature 427 423

    [4]

    Ueda K, Tabata H, Kawai T 1998 Science 280 1064

    [5]

    Li T X, Zhang M, Yu F J, Hu Z, Li K S, Yu D B, Yan H 2012 J. Phys. D: Appl. Phys. 45 085002

    [6]

    Reyren N, Thiel S, Caviglial A D, Fitting Kourkoutis L, Hammerl G, Richter C, Schneider C W, Kopp T, Retschi A S, Jaccard D, Gabay M, Muller D A, Triscone J M, Mannhart J 2007 Science 317 1196

    [7]

    Brinkman A, Huijben M, van Zalk M, Huijben J, Zeitler U, Maan J C, van der Wiel W G, Rijnders G, Blank D H A, Hilgenkamp H 2007 Nat. Mater. 6 493

    [8]

    Wu S M, Cybart S A, Yu P, Rossell M D, Zhang J X, Ramesh R, Dynes R C 2010 Nat. Mater. 9 756

    [9]

    Yu P, Lee J S, Okamoto S, Rossell M D, Huijben M, Yang C H, He Q, Zhang J X, Yang S Y, Lee M J, Ramasse Q M, Erni R, Chu Y H, Arena D A, Kao C C, Martin L W, Ramesh R 2010 Phys. Rev. Lett. 105 027201

    [10]

    Wu S M, Cybart S A, Yi D, Parker J M, Ramesh R, Dynes R C 2013 Phys. Rev. Lett. 110 067202

    [11]

    Eerenstein W, Mathur N D, Scott J F 2006 Nature 442 759

    [12]

    Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wuttig M, Ramesh R 2003 Science 299 1719

    [13]

    Naik V B, Mahendiran R 2009 Solid State Commun. 149 754

    [14]

    Ramachandran B, Dixit A, Naik R, Lawes G, Ramachandra Rao M S 2012 J. Appl. Phys. 111 023910

    [15]

    Bhushan B, Das D, Priyam A, Vasanthacharya N Y, Kumar S 2012 Mater. Chem. Phys. 135 144

    [16]

    Khomchenko V A, Kiselev D A, Vieira J M, Li Jian, Kholkin A L, Lopes A M L, Pogorelov Y G, Araujo J P, Maglione M 2008 J. Appl. Phys. 103 024105

    [17]

    Yang C, Jiang J S, Qian F Z, Jiang D M, Wang C M, Zhang W G 2010 J. Alloys Compd. 507 29

    [18]

    Wang D H, Goh W C, Ning M, Ong C K 2006 Appl. Phys. Lett. 88 212907

    [19]

    Chu Y H, Martin L W, Holcomb M B, Gajek M, Han S J, He Q, Balke N, Yang C H, Lee D, Hu W, Zhan Q, Yang P L, Fraile-Rodríguez A, Scholl A, Wang S X, Ramesh R 2008 Nat. Mater. 7 478

    [20]

    Dho J, Blamire M G 2009 J. Appl. Phys. 106 073914

    [21]

    Zhou G H, Pan X, Zhu Y F 2013 Acta Phys. Sin. 62 097501 (in Chinese) [周广宏, 潘旋, 朱雨富 2013 62 097501]

    [22]

    Wu S M, Cybart Shane A, Yu P, Rossell M D, Zhang J X, Ramesh R, Dynes R C 2010 Nat. Mater. 9 756

    [23]

    Rao S S, Prater J T, Fan Wu, Shelton C T, Maria J P, Narayan J 2013 Nano Lett. 13 5814

    [24]

    Béa H, Bibes M, Ott F, Dupé B, Zhu X H, Petit S, Fusil S, Deranlot C, Bouzehouane K, Barthélémy A 2008 Phys. Rev. Lett. 100 017204

    [25]

    Martin L W, Chu Y H, Holcomb M B, Huijben M, Yu P, Han S J, Lee D, Wang S X, Ramesh R 2008 Nano Lett. 8 2050

    [26]

    Trassin M, Clarkson J D, Bowden S R, Liu J, Heron J T, Paull R J, Arenholz E, Pierce D T, Unguris J 2013 Phys. Rev. B 87 134426

    [27]

    Malozemoff A P 1988 J. Appl. Phys. 63 3874

    [28]

    Mauri D, Siegmann H C, Bagus P S, Kay E 1987 J. Appl. Phys. 62 3047

    [29]

    Liu X H, Liu W, Guo S, Yang F, L X K, Gong W J, Zhang Z D 2010 J. Appl. Phys. 96 082501

  • [1]

    Valencia S, Crassous A, Bocher L, Garcia V, Moya X, Cherifi R O, Deranlot C, Bouzehouane K, Fusil S, Zobelli A, Gloter A, Mathur N D, Gaupp A, Abrudan R, Radu F, Barthélémy A, Bibes M 2011 Nat. Mater. 10 753

    [2]

    Chakhalian J, Freeland J W, Habermeier H U, Cristiani G, Khaliullin G, van Veenendaal M, Keimer B 2007 Science 318 1114

    [3]

    Ohtomo A, Hwang H Y 2004 Nature 427 423

    [4]

    Ueda K, Tabata H, Kawai T 1998 Science 280 1064

    [5]

    Li T X, Zhang M, Yu F J, Hu Z, Li K S, Yu D B, Yan H 2012 J. Phys. D: Appl. Phys. 45 085002

    [6]

    Reyren N, Thiel S, Caviglial A D, Fitting Kourkoutis L, Hammerl G, Richter C, Schneider C W, Kopp T, Retschi A S, Jaccard D, Gabay M, Muller D A, Triscone J M, Mannhart J 2007 Science 317 1196

    [7]

    Brinkman A, Huijben M, van Zalk M, Huijben J, Zeitler U, Maan J C, van der Wiel W G, Rijnders G, Blank D H A, Hilgenkamp H 2007 Nat. Mater. 6 493

    [8]

    Wu S M, Cybart S A, Yu P, Rossell M D, Zhang J X, Ramesh R, Dynes R C 2010 Nat. Mater. 9 756

    [9]

    Yu P, Lee J S, Okamoto S, Rossell M D, Huijben M, Yang C H, He Q, Zhang J X, Yang S Y, Lee M J, Ramasse Q M, Erni R, Chu Y H, Arena D A, Kao C C, Martin L W, Ramesh R 2010 Phys. Rev. Lett. 105 027201

    [10]

    Wu S M, Cybart S A, Yi D, Parker J M, Ramesh R, Dynes R C 2013 Phys. Rev. Lett. 110 067202

    [11]

    Eerenstein W, Mathur N D, Scott J F 2006 Nature 442 759

    [12]

    Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wuttig M, Ramesh R 2003 Science 299 1719

    [13]

    Naik V B, Mahendiran R 2009 Solid State Commun. 149 754

    [14]

    Ramachandran B, Dixit A, Naik R, Lawes G, Ramachandra Rao M S 2012 J. Appl. Phys. 111 023910

    [15]

    Bhushan B, Das D, Priyam A, Vasanthacharya N Y, Kumar S 2012 Mater. Chem. Phys. 135 144

    [16]

    Khomchenko V A, Kiselev D A, Vieira J M, Li Jian, Kholkin A L, Lopes A M L, Pogorelov Y G, Araujo J P, Maglione M 2008 J. Appl. Phys. 103 024105

    [17]

    Yang C, Jiang J S, Qian F Z, Jiang D M, Wang C M, Zhang W G 2010 J. Alloys Compd. 507 29

    [18]

    Wang D H, Goh W C, Ning M, Ong C K 2006 Appl. Phys. Lett. 88 212907

    [19]

    Chu Y H, Martin L W, Holcomb M B, Gajek M, Han S J, He Q, Balke N, Yang C H, Lee D, Hu W, Zhan Q, Yang P L, Fraile-Rodríguez A, Scholl A, Wang S X, Ramesh R 2008 Nat. Mater. 7 478

    [20]

    Dho J, Blamire M G 2009 J. Appl. Phys. 106 073914

    [21]

    Zhou G H, Pan X, Zhu Y F 2013 Acta Phys. Sin. 62 097501 (in Chinese) [周广宏, 潘旋, 朱雨富 2013 62 097501]

    [22]

    Wu S M, Cybart Shane A, Yu P, Rossell M D, Zhang J X, Ramesh R, Dynes R C 2010 Nat. Mater. 9 756

    [23]

    Rao S S, Prater J T, Fan Wu, Shelton C T, Maria J P, Narayan J 2013 Nano Lett. 13 5814

    [24]

    Béa H, Bibes M, Ott F, Dupé B, Zhu X H, Petit S, Fusil S, Deranlot C, Bouzehouane K, Barthélémy A 2008 Phys. Rev. Lett. 100 017204

    [25]

    Martin L W, Chu Y H, Holcomb M B, Huijben M, Yu P, Han S J, Lee D, Wang S X, Ramesh R 2008 Nano Lett. 8 2050

    [26]

    Trassin M, Clarkson J D, Bowden S R, Liu J, Heron J T, Paull R J, Arenholz E, Pierce D T, Unguris J 2013 Phys. Rev. B 87 134426

    [27]

    Malozemoff A P 1988 J. Appl. Phys. 63 3874

    [28]

    Mauri D, Siegmann H C, Bagus P S, Kay E 1987 J. Appl. Phys. 62 3047

    [29]

    Liu X H, Liu W, Guo S, Yang F, L X K, Gong W J, Zhang Z D 2010 J. Appl. Phys. 96 082501

  • [1] 王爱伟, 祝鲁平, 单衍苏, 刘鹏, 曹学蕾, 曹丙强. 利用脉冲激光沉积外延制备CsSnBr3/Si异质结高性能光电探测器.  , 2024, 73(5): 058503. doi: 10.7498/aps.73.20231645
    [2] 姬慧慧, 高兴国, 李枝兰. 铜/锰异质结中维度驱动的交换耦合效应.  , 2024, 73(21): 216102. doi: 10.7498/aps.73.20240849
    [3] 王可欣, 粟傈, 童良乐. 基于反铁磁的无外场辅助自旋轨道矩磁隧道结模型分析.  , 2023, 72(19): 198504. doi: 10.7498/aps.72.20230901
    [4] 魏浩铭, 张颖, 张宙, 吴仰晴, 曹丙强. 极性补偿对LaMnO3/LaNiO3超晶格交换偏置场强度的影响.  , 2022, 71(15): 156801. doi: 10.7498/aps.71.20220365
    [5] 朱照照, 冯正, 蔡建旺. 基于IrMn/Fe/Pt交换偏置结构的无场自旋太赫兹源.  , 2022, 71(4): 048703. doi: 10.7498/aps.71.20211831
    [6] 费翔, 张秀梅, 付泉桂, 蔡正阳, 南海燕, 顾晓峰, 肖少庆. 基于熔融玻璃的预沉积法生长毫米级单晶MoS2及WS2-MoS2异质结.  , 2022, 71(4): 048101. doi: 10.7498/aps.71.20211735
    [7] 陆益敏, 黄国俊, 程勇, 王赛, 刘旭, 韦尚方, 米朝伟. 脉冲激光沉积无氢钨掺杂类金刚石膜的摩擦与机械性能.  , 2021, 70(4): 046801. doi: 10.7498/aps.70.20201505
    [8] 朱照照, 冯正, 蔡建旺. 基于IrMn/Fe/Pt交换偏置结构的无场自旋太赫兹源.  , 2021, (): . doi: 10.7498/aps.70.20211831
    [9] 龙慧, 胡建伟, 吴福根, 董华锋. 基于二维材料异质结可饱和吸收体的超快激光器.  , 2020, 69(18): 188102. doi: 10.7498/aps.69.20201235
    [10] 刘奎立, 周思华, 陈松岭. 金属离子掺杂对CuO基纳米复合材料的交换偏置调控.  , 2015, 64(13): 137501. doi: 10.7498/aps.64.137501
    [11] 周广宏, 潘旋, 朱雨富. BiFeO3/Ni81Fe19磁性双层膜中的交换偏置及其热稳定性研究.  , 2013, 62(9): 097501. doi: 10.7498/aps.62.097501
    [12] 王伟, 唐佳伟, 王乐天, 陈小兵. 脉冲激光沉积法制备高温压电薄膜0.20 BiInO3-0.80PbTiO3(已撤稿).  , 2013, 62(23): 237701. doi: 10.7498/aps.62.237701
    [13] 罗毅, 赵国平, 杨海涛, 宋宁宁, 任肖, 丁浩峰, 成昭华. 单一晶相氧化锰纳米颗粒的交换偏置效应.  , 2013, 62(17): 176102. doi: 10.7498/aps.62.176102
    [14] 张洪武, 周文平, 刘恩克, 王文洪, 吴光恒. Heusler合金NiCoMnSn中的磁场驱动马氏体相变、超自旋玻璃和交换偏置.  , 2013, 62(14): 147501. doi: 10.7498/aps.62.147501
    [15] 徐韵, 李云鹏, 金璐, 马向阳, 杨德仁. 脉冲激光沉积法制备的ZnO薄膜的低阈值电抽运紫外随机激射.  , 2013, 62(8): 084207. doi: 10.7498/aps.62.084207
    [16] 李世帅, 冯秀鹏, 黄金昭, 刘春彦, 张仲, 陶冶微. Zn1-x-yNaxCoyO薄膜的脉冲激光沉积制备及表征.  , 2011, 60(5): 057105. doi: 10.7498/aps.60.057105
    [17] 许小勇, 潘 靖, 胡经国. 交换偏置双层膜中的反铁磁自旋结构及其交换各向异性.  , 2007, 56(9): 5476-5482. doi: 10.7498/aps.56.5476
    [18] 潘 靖, 陶永春, 胡经国. 外应力场下铁磁/反铁磁双层膜系统中的交换偏置.  , 2006, 55(6): 3032-3037. doi: 10.7498/aps.55.3032
    [19] 滕蛟, 蔡建旺, 熊小涛, 赖武彦, 朱逢吾. NiFe/FeMn双层膜交换偏置的形成及热稳定性研究.  , 2004, 53(1): 272-275. doi: 10.7498/aps.53.272
    [20] 敬 超, 金晓峰, 董国胜, 龚小燕, 郁黎明, 郑卫民. 分子束外延生长Fe/Fe50Mn50双层膜的交换偏置.  , 2000, 49(10): 2022-2026. doi: 10.7498/aps.49.2022
计量
  • 文章访问数:  5470
  • PDF下载量:  337
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-05
  • 修回日期:  2014-12-01
  • 刊出日期:  2015-04-05

/

返回文章
返回
Baidu
map