搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向低信噪比的自适应压缩感知方法

文方青 张弓 陶宇 刘苏 冯俊杰

引用本文:
Citation:

面向低信噪比的自适应压缩感知方法

文方青, 张弓, 陶宇, 刘苏, 冯俊杰

Adaptive compressive sensing toward low signal-to-noise ratio scene

Wen Fang-Qing, Zhang Gong, Tao Yu, Liu Su, Feng Jun-Jie
PDF
导出引用
  • 在压缩感知工程应用中, 信号往往被噪声和干扰所影响, 常规的压缩感知方法难以达到理想的重构效果, 特别是低信噪比应用场景中, 稀疏重构往往会失效. 分析了压缩感知中噪声对重构性能的影响, 从理论上解释了压缩感知中的噪声折叠原理, 并在此基础上提出了一种基于方向性测量的自适应压缩感知方案. 该方案通过后端信号处理系统估计出噪声的相关信息并反馈至压缩感知前端, 前端根据反馈的噪声信息调整测量矩阵, 从而改变感知矩阵的方向, 自适应地感知稀疏谱, 从而有效地抑制信号噪声. 仿真实验表明, 所提的自适应压缩感知方法对稀疏信号重构性能有较大的提升.
    As an alternative paradigm to the Shannon-Nyquist sampling theorem, compressive sensing enables sparse signals to be acquired by sub-Nyquist analog-to-digital converters thus may launch a revolution in signal collection, transmission and processing. In the practical compressive sensing applications, the sparse signal is always affected by noise and interference, and therefore the recovery performance reduces based on the conventional compressive sensing, especially in the low signal-to-noise scene, the sparse recovery is usually unavailable. In this paper, the influence of noise on recovery performance is analyzed, so as to provide the theoretical basis for the noise folding phenomenon in compressive sensing. From the analysis, we find that the expected noise gain in the random measure process is closely related to the row and column of the measurement matrix. However, only those columns corresponding to the support for the sparse signal contribute to the sparse vector. In the traditional Shannon-Nyquist sampling system, an antialiasing filter is applied before the sampling process, so as to filter the noise beyond the passband of interest. Inspired by the necessity of antialiasing filtering in bandpass signal sampling, we propose a selective measurement scheme, namely adapted compressive sensing, whose measurement matrix can be updated according to the noise information fed back by the processing center. The measurement matrix is specially designed, and the sensing matrix has directivity so that the signal noise can be suppressed. The measurement matrix senses only the spectrum of interest, where the sparse spectrum is most likely to lie. Moreover, we compare the recovery performance of the proposed adaptive scheme with those of the non-adaptive orthogonal matching pursuit algorithm, FOCal underdetermined system solver algorithm, and sarse Bayesian learning algorithm. Extensive numerical experiments show that the proposed scheme has a better improvement in the performance of the sparse signal recovery. From the viewpoint of implementation, the measurement noise should be taken into consideration in the system, and more efficient algorithms will be developed for source pre-estimation at lower signal-to-noise ratio.
    • 基金项目: 国家自然科学基金(批准号: 61071163, 61201367, 61271327, 61471191)、南京航空航天大学博士学位论文创新与创优基金(批准号: BCXJ14-08)、江苏省研究生培养创新工程(批准号: KYLX_0277)、中央高等学校基本科研业务费专项资金(批准号: NP2015504)和江苏高等学校优势学科建设工程资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61071163, 61201367, 61271327, 61471191), the Funding for Outstanding Doctoral Dissertation of Nanjing University of Aeronautics and Astronautic, China (Grant No. BCXJ14-08), the Innovation Program for Graduate Education of Jiangsu Province, China (Grant No. KYLX_0277), the Fundamental Research Funds for the Central Universities, China (Grant No. NP2015504), and the Priority Discipline Development Program of Jiangsu Higher Education Institutions, China.
    [1]

    Donoho D L 2006 IEEE Trans. Inform. Theory 52 1289

    [2]

    Mishali M, Eldar Y C 2009 IEEE Trans. Signal Process. 57 993

    [3]

    Zhang J C, Fu N, Qiao L Y 2014 Acta Phys. Sin. 63 030701 (in Chinese) [张京超, 付宁, 乔立岩 2014 63 030701]

    [4]

    Wang L Y, Li L, Yan B, Jiang C S, Wang H Y, Bao S L 2010 Chin. Phys. B 19 088106

    [5]

    Zhao S M, Zhuang P 2014 Chin. Phys. B 23 054203

    [6]

    Sun Y L, Tao J X 2014 Chin. Phys. B 23 078703

    [7]

    Wang Z, Wang B Z 2014 Acta Phys. Sin. 63 120202 (in Chinese) [王哲, 王秉中 2014 63 120202]

    [8]

    Yang F Q, Zhang D H, Huang K D 2014 Acta Phys. Sin. 63 058701 (in Chinese) [杨富强, 张定华, 黄魁东 2014 63 058701]

    [9]

    Candes E J, Tao T 2005 IEEE Trans. Inform. Theory 51 4203

    [10]

    Rao B D, Engan K, Cotter S F 2003 IEEE Trans. Signal Process. 51 760

    [11]

    Castro E A, Eldar Y C 2011 IEEE Signal Process. Lett. 18 478

    [12]

    Davenport M A, Laska J N, Treichler J, Baraniuk R G 2012 IEEE Trans. Signal Process. 60 4628

    [13]

    Cotter S F, Rao B D, Engan K, Delgado K K 2005 IEEE Trans. Signal Process. 53 2477

    [14]

    Candes E J 2008 Comptes Rendus Mathematique 346 589

    [15]

    Tropp J A, Gilbert A C 2007 IEEE Trans. Inform. Theory 53 4655

    [16]

    Ji S H, Xue Y, Carin L 2008 IEEE Trans. Signal Process. 56 2346

    [17]

    Davenport M A 2010 Ph. D. Dissertation (Texas: Rice University)

    [18]

    Zhang J D, Zhu D Y, Zhang G 2012 IEEE Trans. Signal Process. 60 1718

    [19]

    Wipf D P, Rao D B 2007 IEEE Trans. Signal Process. 55 3704

  • [1]

    Donoho D L 2006 IEEE Trans. Inform. Theory 52 1289

    [2]

    Mishali M, Eldar Y C 2009 IEEE Trans. Signal Process. 57 993

    [3]

    Zhang J C, Fu N, Qiao L Y 2014 Acta Phys. Sin. 63 030701 (in Chinese) [张京超, 付宁, 乔立岩 2014 63 030701]

    [4]

    Wang L Y, Li L, Yan B, Jiang C S, Wang H Y, Bao S L 2010 Chin. Phys. B 19 088106

    [5]

    Zhao S M, Zhuang P 2014 Chin. Phys. B 23 054203

    [6]

    Sun Y L, Tao J X 2014 Chin. Phys. B 23 078703

    [7]

    Wang Z, Wang B Z 2014 Acta Phys. Sin. 63 120202 (in Chinese) [王哲, 王秉中 2014 63 120202]

    [8]

    Yang F Q, Zhang D H, Huang K D 2014 Acta Phys. Sin. 63 058701 (in Chinese) [杨富强, 张定华, 黄魁东 2014 63 058701]

    [9]

    Candes E J, Tao T 2005 IEEE Trans. Inform. Theory 51 4203

    [10]

    Rao B D, Engan K, Cotter S F 2003 IEEE Trans. Signal Process. 51 760

    [11]

    Castro E A, Eldar Y C 2011 IEEE Signal Process. Lett. 18 478

    [12]

    Davenport M A, Laska J N, Treichler J, Baraniuk R G 2012 IEEE Trans. Signal Process. 60 4628

    [13]

    Cotter S F, Rao B D, Engan K, Delgado K K 2005 IEEE Trans. Signal Process. 53 2477

    [14]

    Candes E J 2008 Comptes Rendus Mathematique 346 589

    [15]

    Tropp J A, Gilbert A C 2007 IEEE Trans. Inform. Theory 53 4655

    [16]

    Ji S H, Xue Y, Carin L 2008 IEEE Trans. Signal Process. 56 2346

    [17]

    Davenport M A 2010 Ph. D. Dissertation (Texas: Rice University)

    [18]

    Zhang J D, Zhu D Y, Zhang G 2012 IEEE Trans. Signal Process. 60 1718

    [19]

    Wipf D P, Rao D B 2007 IEEE Trans. Signal Process. 55 3704

  • [1] 王攀, 王仲根, 孙玉发, 聂文艳. 新型压缩感知计算模型分析三维电大目标电磁散射特性.  , 2023, 72(3): 030202. doi: 10.7498/aps.72.20221532
    [2] 曹海燕, 叶震宇. 基于压缩感知理论的大规模MIMO系统下行信道估计中的导频优化理论分析与算法设计.  , 2022, 71(5): 050101. doi: 10.7498/aps.71.20211504
    [3] 干红平, 张涛, 花燚, 舒君, 何立军. 基于双极性混沌序列的托普利兹块状感知矩阵.  , 2021, 70(3): 038402. doi: 10.7498/aps.70.20201475
    [4] 曹海燕, 叶震宇. 基于压缩感知理论的大规模MIMO系统下行信道估计中的导频优化理论分析与算法设计.  , 2021, (): . doi: 10.7498/aps.70.20211504
    [5] 陈炜, 郭媛, 敬世伟. 基于深度学习压缩感知与复合混沌系统的通用图像加密算法.  , 2020, 69(24): 240502. doi: 10.7498/aps.69.20201019
    [6] 王盼盼, 姚旭日, 刘雪峰, 俞文凯, 邱棚, 翟光杰. 基于行扫描测量的运动目标压缩成像.  , 2017, 66(1): 014201. doi: 10.7498/aps.66.014201
    [7] 时洁, 杨德森, 时胜国, 胡博, 朱中锐. 基于压缩感知的矢量阵聚焦定位方法.  , 2016, 65(2): 024302. doi: 10.7498/aps.65.024302
    [8] 庄佳衍, 陈钱, 何伟基, 冒添逸. 基于压缩感知的动态散射成像.  , 2016, 65(4): 040501. doi: 10.7498/aps.65.040501
    [9] 李少东, 陈文峰, 杨军, 马晓岩. 低信噪比下的二维联合线性布雷格曼迭代快速超分辨成像算法.  , 2016, 65(3): 038401. doi: 10.7498/aps.65.038401
    [10] 郭静波, 汪韧. 交替寻优生成元素幅值结合混沌随机相位构造循环测量矩阵.  , 2015, 64(13): 130702. doi: 10.7498/aps.64.130702
    [11] 李广明, 吕善翔. 混沌信号的压缩感知去噪.  , 2015, 64(16): 160502. doi: 10.7498/aps.64.160502
    [12] 郭静波, 李佳文. 二进制信号的混沌压缩测量与重构.  , 2015, 64(19): 198401. doi: 10.7498/aps.64.198401
    [13] 张新鹏, 胡茑庆, 程哲, 钟华. 基于压缩感知的振动数据修复方法.  , 2014, 63(20): 200506. doi: 10.7498/aps.63.200506
    [14] 王哲, 王秉中. 压缩感知理论在矩量法中的应用.  , 2014, 63(12): 120202. doi: 10.7498/aps.63.120202
    [15] 李龙珍, 姚旭日, 刘雪峰, 俞文凯, 翟光杰. 基于压缩感知超分辨鬼成像.  , 2014, 63(22): 224201. doi: 10.7498/aps.63.224201
    [16] 郭静波, 汪韧. 基于混沌序列和RIPless理论的循环压缩测量矩阵的构造.  , 2014, 63(19): 198402. doi: 10.7498/aps.63.198402
    [17] 康荣宗, 田鹏武, 于宏毅. 一种基于选择性测量的自适应压缩感知方法.  , 2014, 63(20): 200701. doi: 10.7498/aps.63.200701
    [18] 宁方立, 何碧静, 韦娟. 基于lp范数的压缩感知图像重建算法研究.  , 2013, 62(17): 174212. doi: 10.7498/aps.62.174212
    [19] 冯丙辰, 方晟, 张立国, 李红, 童节娟, 李文茜. 基于压缩感知理论的非线性γ谱分析方法.  , 2013, 62(11): 112901. doi: 10.7498/aps.62.112901
    [20] 白旭, 李永强, 赵生妹. 基于压缩感知的差分关联成像方案研究.  , 2013, 62(4): 044209. doi: 10.7498/aps.62.044209
计量
  • 文章访问数:  6898
  • PDF下载量:  4510
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-23
  • 修回日期:  2014-10-24
  • 刊出日期:  2015-04-05

/

返回文章
返回
Baidu
map