搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

阶梯氧化层新型折叠硅横向双扩散功率器件

段宝兴 李春来 马剑冲 袁嵩 杨银堂

引用本文:
Citation:

阶梯氧化层新型折叠硅横向双扩散功率器件

段宝兴, 李春来, 马剑冲, 袁嵩, 杨银堂

New folding lateral double-diffused metal-oxide-semiconductor field effect transistor with the step oxide layer

Duan Bao-Xing, Li Chun-Lai, Ma Jian-Chong, Yuan Song, Yang Yin-Tang
PDF
导出引用
  • 为了设计功率集成电路所需的低功耗横向功率器件, 提出了一种具有阶梯氧化层折叠硅横向双扩散金属-氧化物-半导体(step oxide folding LDMOS, SOFLDMOS)新结构. 这种结构将阶梯氧化层覆盖在具有周期分布的折叠硅表面, 利用阶梯氧化层的电场调制效应, 通过在表面电场分布中引入新的电场峰而使表面电场分布均匀, 提高了器件的耐压范围, 解决了文献提出的折叠积累型横向双扩散金属-氧化物-半导体器件击穿电压受限的问题. 通过三维仿真软件ISE分析获得, SOFLDMOS 结构打破了硅的极限关系, 充分利用了电场调制效应、多数载流子积累和硅表面导电区倍增效应, 漏极饱和电流比一般LDMOS 提高3.4倍左右, 可以在62 V左右的反向击穿电压条件下, 获得0.74 mΩ·cm2超低的比导通电阻, 远低于传统LDMOS相同击穿电压下2.0 mΩ·cm2比导通电阻, 为实现低压功率集成电路对低功耗横向功率器件的要求提供了一种可选的方案.
    In order to design the power devices with the low loss required for the power integrated circuits (PIC), a new folded silicon LDMOS with the folding step oxide layer (SOFLDMOS) is proposed in this paper for the first time. In this structure, the step oxide layer is covered on the folded silicon surface with a periodic distribution. The surface electric field is optimized to be uniform by introducing a new electric field peak due to the electric field modulation effect by the step oxide layer. The breakdown voltage is improved to solve the breakdown voltage limitation problem in FALDMOS. Obtained in virtue of the ISE simulation are the results that the silicon limit is broken by applying the effects of the electric field modulation, accumulation of majority carriers, and conductive silicon region multiplier in the proposed SOFLDMOS. The saturation current of the drain electron is increased by about 3.4 times compared with that of the conventional LDMOS. When the breakdown voltage is 62 V, an ultra-low specific on-resistance of 0.74 mΩ·cm2 is obtained, which is far less than 2.0 mΩ·cm2 in the conventional LDMOS with the same breakdown voltage. The low loss requirements is achieved for the PIC with the low voltage region by the proposed SOFLDMOS.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2014CB339900, 2015CB351906)、国家自然科学基金重点项目(批准号: 61234006, 61334002)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2014CB339900, 2015CB351906), and the Key Program of National Natural Science Foundation of China (Grant Nos. 61234006, 61334002).
    [1]

    Chen X B, Wang X, Johnny K O S 2000 IEEE Trans. Electron Dev. 47 1280

    [2]

    Yoshiaki T, Katakura H, Takatoshi O, Masanobu I, Hitoshi S 2013 Proceedings of the 25th International Power Semiconductor Devices and ICs Kanazawa, May 26-30, 2013 p145

    [3]

    Mao K, Qiao M, Jiang L L, Jiang H P, Li Z H, Chen W Z, Li Z L, Zhang B 2013 Proceedings of the 25th International Power Semiconductor Devices and ICs Kanazawa, May 26-30, 2013 p397

    [4]

    Chen X B, Johnny K O S 2001 IEEE Trans. Electron Dev. 48 344

    [5]

    Sameh G, Khalil N, Salama C A T 2003 IEEE Trans. Electron Dev. 50 1385

    [6]

    Sameh G, Khalil N, Li Z H, Salama C A T 2004 IEEE Trans. Electron Dev. 51 1185

    [7]

    Park Y, Salama C T 2005 Proceedings of the 17th International Power Semiconductor Devices and ICs Santa Barbara, California, May 26-30, 2005 p163

    [8]

    Zhang B, Chen L, Wu J, Li Z J 2005 International Conference on Communications, Circuits and System Hong Kong, 2005 p1399

    [9]

    Duan B X, Yang Y T, Zhang B 2009 IEEE Electron Dev. Lett. 30 305

    [10]

    Duan B X, Yang Y T 2011 Micro & Nano Lett. 6 881

    [11]

    Nakagawa A, Kawaguchi Y 2000 Proceedings of the 25th International Power Semiconductor Devices and ICs Toulouse, France, May 22-25, 2000 p47

    [12]

    Yung C L, Gan K P, Ganesh S S 2001 IEEE Electron Dev. Lett. 22 407

    [13]

    Duan B X, Yang Y T 2011 IETE Tech. Rev. 28 503

    [14]

    Duan B X, Yang Y T 2012 IETE Tech. Rev. 29 36

    [15]

    Duan B X, Yang Y T 2012 IETE Tech. Rev. 29 276

    [16]

    Duan B X, Zhang B, Li Z J 2005 Solid-State Electron. 49 1965

    [17]

    Duan B X, Zhang B, Li Z J 2006 IEEE Electron Dev. Lett. 27 377

    [18]

    Duan B X, Zhang B, Li Z J 2007 Chin. Phys. Lett. 24 1342

    [19]

    Duan B X, Yang Y T, Zhang B, Hong X F 2009 IEEE Electron Dev. Lett. 30 1329

    [20]

    Duan B X, Yang Y T 2011 IEEE Trans. Electron Dev. 58 2057

    [21]

    Duan B X, Yang Y T, Zhang B, Li Z J 2008 J. Semicond. 29 677

    [22]

    Duan B X, Yang Y T, Zhang B 2010 Solid-State Electron. 54 685

    [23]

    Duan B X, Yang Y T 2012 Chin. Phys. B 21 057201

    [24]

    Duan B X, Yang Y T, Chen J 2012 Acta Phys. Sin. 61 227302 (in Chinese) [段宝兴, 杨银堂, 陈敬 2012 61 227302]

    [25]

    Duan B X, Yang Y T 2014 Acta Phys. Sin. 63 057302 (in Chinese) [段宝兴, 杨银堂 2014 63 057302]

    [26]

    ISE TCAD Manuals, release 10.0, Synopsys

    [27]

    Appels J A, Collet M G, Hart P A H, Vaes H M J, Verhoeven J F C M 1980 Philips J. Res. 35 1

    [28]

    Duan B X, Yang Y T 2012 Science China Inform. Sci. 55 473

    [29]

    Michael A, Vladimir R 1985 International Electron Devices Meeting Washington, DC, December 1-4, 1985 p736

    [30]

    Park I Y, Choi Y K, Ko K Y, Yoon C J, Kim Y S, Kim M Y, Kim H T, Lim H C, Kim N J, Yoo K D 2009 Proceedings of the 21th International Power Semiconductor Devices and ICs Barcelona, Spain, June 15-17, 2009 p192

    [31]

    Chen Y, Buddharaju K D, Liang Y C, Samudra G S, Feng H H 2007 19th International Power Semiconductor Devices and ICs Jeju, Korea, May 27-30 p177

  • [1]

    Chen X B, Wang X, Johnny K O S 2000 IEEE Trans. Electron Dev. 47 1280

    [2]

    Yoshiaki T, Katakura H, Takatoshi O, Masanobu I, Hitoshi S 2013 Proceedings of the 25th International Power Semiconductor Devices and ICs Kanazawa, May 26-30, 2013 p145

    [3]

    Mao K, Qiao M, Jiang L L, Jiang H P, Li Z H, Chen W Z, Li Z L, Zhang B 2013 Proceedings of the 25th International Power Semiconductor Devices and ICs Kanazawa, May 26-30, 2013 p397

    [4]

    Chen X B, Johnny K O S 2001 IEEE Trans. Electron Dev. 48 344

    [5]

    Sameh G, Khalil N, Salama C A T 2003 IEEE Trans. Electron Dev. 50 1385

    [6]

    Sameh G, Khalil N, Li Z H, Salama C A T 2004 IEEE Trans. Electron Dev. 51 1185

    [7]

    Park Y, Salama C T 2005 Proceedings of the 17th International Power Semiconductor Devices and ICs Santa Barbara, California, May 26-30, 2005 p163

    [8]

    Zhang B, Chen L, Wu J, Li Z J 2005 International Conference on Communications, Circuits and System Hong Kong, 2005 p1399

    [9]

    Duan B X, Yang Y T, Zhang B 2009 IEEE Electron Dev. Lett. 30 305

    [10]

    Duan B X, Yang Y T 2011 Micro & Nano Lett. 6 881

    [11]

    Nakagawa A, Kawaguchi Y 2000 Proceedings of the 25th International Power Semiconductor Devices and ICs Toulouse, France, May 22-25, 2000 p47

    [12]

    Yung C L, Gan K P, Ganesh S S 2001 IEEE Electron Dev. Lett. 22 407

    [13]

    Duan B X, Yang Y T 2011 IETE Tech. Rev. 28 503

    [14]

    Duan B X, Yang Y T 2012 IETE Tech. Rev. 29 36

    [15]

    Duan B X, Yang Y T 2012 IETE Tech. Rev. 29 276

    [16]

    Duan B X, Zhang B, Li Z J 2005 Solid-State Electron. 49 1965

    [17]

    Duan B X, Zhang B, Li Z J 2006 IEEE Electron Dev. Lett. 27 377

    [18]

    Duan B X, Zhang B, Li Z J 2007 Chin. Phys. Lett. 24 1342

    [19]

    Duan B X, Yang Y T, Zhang B, Hong X F 2009 IEEE Electron Dev. Lett. 30 1329

    [20]

    Duan B X, Yang Y T 2011 IEEE Trans. Electron Dev. 58 2057

    [21]

    Duan B X, Yang Y T, Zhang B, Li Z J 2008 J. Semicond. 29 677

    [22]

    Duan B X, Yang Y T, Zhang B 2010 Solid-State Electron. 54 685

    [23]

    Duan B X, Yang Y T 2012 Chin. Phys. B 21 057201

    [24]

    Duan B X, Yang Y T, Chen J 2012 Acta Phys. Sin. 61 227302 (in Chinese) [段宝兴, 杨银堂, 陈敬 2012 61 227302]

    [25]

    Duan B X, Yang Y T 2014 Acta Phys. Sin. 63 057302 (in Chinese) [段宝兴, 杨银堂 2014 63 057302]

    [26]

    ISE TCAD Manuals, release 10.0, Synopsys

    [27]

    Appels J A, Collet M G, Hart P A H, Vaes H M J, Verhoeven J F C M 1980 Philips J. Res. 35 1

    [28]

    Duan B X, Yang Y T 2012 Science China Inform. Sci. 55 473

    [29]

    Michael A, Vladimir R 1985 International Electron Devices Meeting Washington, DC, December 1-4, 1985 p736

    [30]

    Park I Y, Choi Y K, Ko K Y, Yoon C J, Kim Y S, Kim M Y, Kim H T, Lim H C, Kim N J, Yoo K D 2009 Proceedings of the 21th International Power Semiconductor Devices and ICs Barcelona, Spain, June 15-17, 2009 p192

    [31]

    Chen Y, Buddharaju K D, Liang Y C, Samudra G S, Feng H H 2007 19th International Power Semiconductor Devices and ICs Jeju, Korea, May 27-30 p177

  • [1] 刘成, 李明, 文章, 顾钊源, 杨明超, 刘卫华, 韩传余, 张勇, 耿莉, 郝跃. 复合漏电模型建立及阶梯场板GaN肖特基势垒二极管设计.  , 2022, 71(5): 057301. doi: 10.7498/aps.71.20211917
    [2] 杨初平, 耿屹楠, 王捷, 刘兴南, 时振刚. 高气压氦气平行极板击穿电压及场致发射的影响.  , 2021, 70(13): 135102. doi: 10.7498/aps.70.20210086
    [3] 唐春萍, 段宝兴, 宋坤, 王彦东, 杨银堂. 衬底浮空的新型绝缘体上硅基横向功率器件分析.  , 2021, 70(14): 148501. doi: 10.7498/aps.70.20202065
    [4] 徐大林, 王玉琦, 李新化, 史同飞. 电荷耦合效应对高耐压沟槽栅极超势垒整流器击穿电压的影响.  , 2021, 70(6): 067301. doi: 10.7498/aps.70.20201558
    [5] 郭海君, 段宝兴, 袁嵩, 谢慎隆, 杨银堂. 具有部分本征GaN帽层新型AlGaN/GaN高电子迁移率晶体管特性分析.  , 2017, 66(16): 167301. doi: 10.7498/aps.66.167301
    [6] 赵逸涵, 段宝兴, 袁嵩, 吕建梅, 杨银堂. 具有纵向辅助耗尽衬底层的新型横向双扩散金属氧化物半导体场效应晶体管.  , 2017, 66(7): 077302. doi: 10.7498/aps.66.077302
    [7] 岳姗, 刘兴男, 时振刚. 高压氦气平行极板击穿电压实验研究.  , 2015, 64(10): 105101. doi: 10.7498/aps.64.105101
    [8] 李春来, 段宝兴, 马剑冲, 袁嵩, 杨银堂. 具有P型覆盖层新型超级结横向双扩散功率器件.  , 2015, 64(16): 167304. doi: 10.7498/aps.64.167304
    [9] 曹震, 段宝兴, 袁小宁, 杨银堂. 具有半绝缘多晶硅完全三维超结横向功率器件.  , 2015, 64(18): 187303. doi: 10.7498/aps.64.187303
    [10] 胡辉勇, 刘翔宇, 连永昌, 张鹤鸣, 宋建军, 宣荣喜, 舒斌. γ射线总剂量辐照效应对应变Sip型金属氧化物半导体场效应晶体管阈值电压与跨导的影响研究.  , 2014, 63(23): 236102. doi: 10.7498/aps.63.236102
    [11] 段宝兴, 杨银堂. 阶梯AlGaN外延新型Al0.25Ga0.75N/GaN HEMTs击穿特性分析.  , 2014, 63(5): 057302. doi: 10.7498/aps.63.057302
    [12] 石艳梅, 刘继芝, 姚素英, 丁燕红. 具有纵向漏极场板的低导通电阻绝缘体上硅横向双扩散金属氧化物半导体器件新结构.  , 2014, 63(10): 107302. doi: 10.7498/aps.63.107302
    [13] 石艳梅, 刘继芝, 姚素英, 丁燕红, 张卫华, 代红丽. 具有L型源极场板的双槽绝缘体上硅高压器件新结构.  , 2014, 63(23): 237305. doi: 10.7498/aps.63.237305
    [14] 段宝兴, 曹震, 袁嵩, 袁小宁, 杨银堂. 新型缓冲层分区电场调制横向双扩散超结功率器件.  , 2014, 63(24): 247301. doi: 10.7498/aps.63.247301
    [15] 王骁玮, 罗小蓉, 尹超, 范远航, 周坤, 范叶, 蔡金勇, 罗尹春, 张波, 李肇基. 高k介质电导增强SOI LDMOS机理与优化设计.  , 2013, 62(23): 237301. doi: 10.7498/aps.62.237301
    [16] 刘红侠, 尹湘坤, 刘冰洁, 郝跃. 应变绝缘层上硅锗p型金属氧化物场效应晶体管的阈值电压解析模型.  , 2010, 59(12): 8877-8882. doi: 10.7498/aps.59.8877
    [17] 魏 巍, 郝 跃, 冯 倩, 张进城, 张金凤. AlGaN/GaN场板结构高电子迁移率晶体管的场板尺寸优化分析.  , 2008, 57(4): 2456-2461. doi: 10.7498/aps.57.2456
    [18] 李 琦, 李肇基, 张 波. 表面注入P-top区double RESURF功率器件表面电场模型.  , 2007, 56(11): 6660-6665. doi: 10.7498/aps.56.6660
    [19] 郭亮良, 冯 倩, 郝 跃, 杨 燕. 高击穿电压的AlGaN/GaN FP-HEMT研究与分析.  , 2007, 56(5): 2895-2899. doi: 10.7498/aps.56.2895
    [20] 赵 毅, 万星拱. 0.18μm CMOS工艺栅极氧化膜可靠性的衬底和工艺依存性.  , 2006, 55(6): 3003-3006. doi: 10.7498/aps.55.3003
计量
  • 文章访问数:  5795
  • PDF下载量:  321
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-20
  • 修回日期:  2014-10-20
  • 刊出日期:  2015-03-05

/

返回文章
返回
Baidu
map