搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅基全光宽带太赫兹幅度调制器的研究

田伟 文岐业 陈智 杨青慧 荆玉兰 张怀武

引用本文:
Citation:

硅基全光宽带太赫兹幅度调制器的研究

田伟, 文岐业, 陈智, 杨青慧, 荆玉兰, 张怀武

Optically tuned wideband terahertz wave amplitude modulator based on gold-doped silicon

Tian Wei, Wen Qi-Ye, Chen Zhi, Yang Qing-Hui, Jing Yu-Lan, Zhang Huai-Wu
PDF
导出引用
  • 提出了一种基于掺金硅的全光学宽带太赫兹波幅度调制器, 研究了金(Au)点阵掺杂后硅(Si)体内的少数载流子寿命及其太赫兹波调制特性. 实验结果表明, 掺杂的Au原子为Si中的光生电子- 空穴对提供了有效复合中心, 使其少数载流子寿命由原来十几微秒降低至110 ns左右. 利用波长915 nm 调制激光作为抽运光源, 在340 GHz载波的动态调制测试中获得4.3 MHz的调制速率和21%的调制深度, 使Si基调制器的调制速率提高了两个数量级. 该全光太赫兹调制器可工作在整个太赫兹频段内, 具有极化不敏感特性, 因而在太赫兹波高速和宽带调控方面具有重要的应用价值, 也是构建光控型Si 基太赫兹功能器件的重要基础.
    In this paper, we present a broadband terahertz wave amplitude modulator based on optically-controlled gold-doped silicon. Gold dots with a diameter of 40 μm are used as a dopant source. Experimental results indicate that interstitial Au atoms provide effective recombination centers for photo-generated electron-hole pairs in Si body, leading to a significant decrease of the minority carrier lifetime from more than 10 μs to about 110 ns. Dynamic modulation measurement at 340 GHz carrier shows a modulation depth of 21% and a maximum modulation speed of 4.3 MHz. This modulator has advantages such as wideband operation, high modulation speed, polarization insensitivity, and easy manufacture by using the large-scale integrated technology, and thus can be widely used in terahertz technology.
    • 基金项目: 国家自然科学基金重点项目(批准号: 61131005)、教育部科学技术研究重大项目(批准号: 313013)、国家高新技术研究计划(批准号: 2011AA010204)、教育部新世纪优秀人才资助计划(批准号: NCET-11-0068)、四川省杰出青年学术技术带头人计划(批准号: 2011JQ0001)和高校博士点专项科研基金(批准号: 20110185130002)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61131005), the Key Program Project of Chinese Ministry of Education (Grant No. 313013), the National High-tech Research and Development Progran (Grant No. 2011AA010204), the New Century Excellent Talent Foundation of Ministry of Education, China (Grant No. NCET-11-0068), Sichuan Youth S & T Foundation, China (Grant No. 2011JQ0001), and the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20110185130002).
    [1]

    Tonouchi M 2007 Nat. Photon. 1 97

    [2]

    Federici J, Moeller L 2010 J. Appl. Phys. 107 111101

    [3]

    Mittleman D M, Gupta M, Neelamani R, Baraniuk R G, Rudd J V, Koch M 1999 Appl. Phys. B 68 1085

    [4]

    Siegel P H Microwave Symposium Digest 2004 IEEE MTT-S International 2004 1575

    [5]

    Kemp M C, Taday P F, Cole B E, Cluff J A, Fitzgerald A J, Tribe W R 2003 International Society for Optics and Photonics in AeroSense 2003 p44

    [6]

    Kleine-Ostmann T, Dawson P, Pierz K, Hein G, Koch M 2004 Appl. Phys. Lett. 84 3555

    [7]

    Kleine-Ostmann T, Pierz K, Hein G, Dawson P, Marso M, Koch M 2009 J. Appl. Phys. 105 093707

    [8]

    Suzuki D, Oda S, Kawano Y 2013 Appl. Phys. Lett. 102 122102

    [9]

    Fekete L, Kadlec F, Kuzel P, Nemec H 2007 Opt. Lett. 32 680

    [10]

    Fekete L, Kadlec F, Nemec H, Kuzel P 2007 Opt. Express 15 8898

    [11]

    Seo M, Kyoung J, Park H, Koo S, Kim H, Bernien H, Kim B J, Choe J H, Ahn Y H, Kim H T, Park N, Park Q H, Ahn K, Kim D 2010 Nano Lett. 10 2064

    [12]

    Wen Q Y, Zhang H W, Yang Q H, Xie Y S, Chen K, Liu Y L 2010 Appl. Phys. Lett. 97 021111

    [13]

    Choi S B, Kyoung J S, Kim H S, Park H R, Park D J, Kim B J, Ahn Y H, Rotermund F, Kim H T, Ahn K J, Kim D S 2011 Appl. Phys. Lett. 98 071105

    [14]

    Liu M K, Hwang H Y, Tao H, Strikwerda A C, Fan K B, Keiser G R, Sternbach A J, West K G, Kittiwatanakul S, Lu J W, Wolf S A, Omenetto F G, Zhang X, Nelson K A, Averitt R D 2012 Nature 487 345

    [15]

    Wen Q Y, Zhang H W, Yang Q H, Chen Z, Long Y, Jing Y L, Lin Y, Zhang P X 2012 J. Phys. D: Appl. Phys. 45 235106

    [16]

    Sun D D, Chen Z, Wen Q Y, Qiu D H, Lai W E, Dong K, Zhao B H, Zhang H W 2013 Acta Phys. Sin. 62 017202 (in Chinese) [孙丹丹, 陈智, 文岐业, 邱东鸿, 赖伟恩, 董凯, 赵碧辉, 张怀武 2013 62 017202]

    [17]

    Zhao Y, Chen C, Pan X, Zhu Y, Holtz M, Bernussi A, Fan Z 2013 J. Appl. Phys. 114 113509

    [18]

    Liu Z Q, Chang S J, Wang X L, Fan F, Li W 2013 Acta Phys. Sin 62 130702 (in Chinese) [刘志强, 常胜江, 王晓雷, 范飞, 李伟 2013 62 130702]

    [19]

    Chen H T, Padilla W J, Zide J M O, Gossard A C, Taylor A J, Averitt R D 2006 Nature 444 597

    [20]

    Chen H T, Palit S, Tyler T, Bingham C M, Zide J M O, O'Hara J F, Smith D R, Gossard A C, Averitt R D, Padilla W J, Jokerst N M, Taylor A J 2008 Appl. Phys. Lett. 93 091117

    [21]

    Chen H T, Padilla W J, Cich M J, Azad A K, Averitt R D, Taylor A J 2009 Nat. Photon. 3 148

    [22]

    Shu J, Qiu C, Astley V, Nickel D, Mittleman D M, Xu Q 2011 Opt. Express 19 26666

    [23]

    Yang Y, Huang R, Cong L, Zhu Z, Gu J, Tian Z, Singh R, Zhang S, Han J, Zhang W 2011 Appl. Phys. Lett. 98 121114

    [24]

    Yan R S, Sensale-Rodriguez B, Liu L, Jena D, Xing H G 2012 Opt. Express 20 28664

    [25]

    Gao W, Shu J, Reichel K, Nickel D V, He X, Shi G, Vajtai R, Ajayan P M, Kono J, Mittleman D M 2014 Nano Lett. 14 1242

    [26]

    Karl N, Reichel K, Chen H T, Taylor A J, Brener I, Benz A, Reno J L, Mendis R, Mittleman D M 2014 Appl. Phys. Lett. 104 091115

    [27]

    Larsen K, Austin D, Sandall I C, Davies D G, Revin D G, Cockburn J W, Adawi A M, Airey R J, Fry P W, Hopkinson M, Wilson L R 2012 Appl. Phys. Lett. 101 251109

    [28]

    Zhou Q L, Shi Y L, Wang A H, Li L, Zhang C L 2012 Chin. Phys. B 21 058701

    [29]

    Chan W L, Chen H T, Taylor A J, Brener I, Cich M J, Mittleman D M 2009 Appl. Phys. Lett. 94 213511

    [30]

    Shrekenhamer D, Montoya J, Krishna S, Padilla W J 2013 Adv. Opt. Mater. 1 905

    [31]

    Savo S, Shrekenhamer D, Padilla W J 2014 Adv. Opt. Mater. 2 275

    [32]

    He X J, Li T Y, Wang L, Wang J M, Jiang J X, Yang G H, Meng F Y, Wu Q 2014 J. Appl. Phys. 115 17B903

    [33]

    Degl'innocenti R, Jessop D S, Shah Y D, Sibik J, Zeitler J A, Kidambi P R, Hofmann S, Beere H E, Ritchie D A 2014 ACS Nano 8 2548

    [34]

    Shrekenhamer D, Rout S, Strikwerda A C, Bingham C, Averitt R D, Sonkusale S, Padilla W J 2011 Opt. Express 19 9968

    [35]

    Weis P, Garcia-Pomar J L, Hoh M, Reinhard B, Brodyanski A, Rahm M 2012 ACS Nano 6 9118

    [36]

    Xie Z, Wang X, Ye J, Feng S, Sun W, Akalin T, Zhang Y 2013 Scientific Reports 3 3347

    [37]

    Wen Q Y, Tian W, Mao Q, Chen Z, Liu W W, Yang Q H, Sanderson M, Zhang H W 2014 Scientific Reports 4 7409

    [38]

    Collins C B, Carlson R O, Gallagher C J 1957 Phys. Rev. 105 1168

  • [1]

    Tonouchi M 2007 Nat. Photon. 1 97

    [2]

    Federici J, Moeller L 2010 J. Appl. Phys. 107 111101

    [3]

    Mittleman D M, Gupta M, Neelamani R, Baraniuk R G, Rudd J V, Koch M 1999 Appl. Phys. B 68 1085

    [4]

    Siegel P H Microwave Symposium Digest 2004 IEEE MTT-S International 2004 1575

    [5]

    Kemp M C, Taday P F, Cole B E, Cluff J A, Fitzgerald A J, Tribe W R 2003 International Society for Optics and Photonics in AeroSense 2003 p44

    [6]

    Kleine-Ostmann T, Dawson P, Pierz K, Hein G, Koch M 2004 Appl. Phys. Lett. 84 3555

    [7]

    Kleine-Ostmann T, Pierz K, Hein G, Dawson P, Marso M, Koch M 2009 J. Appl. Phys. 105 093707

    [8]

    Suzuki D, Oda S, Kawano Y 2013 Appl. Phys. Lett. 102 122102

    [9]

    Fekete L, Kadlec F, Kuzel P, Nemec H 2007 Opt. Lett. 32 680

    [10]

    Fekete L, Kadlec F, Nemec H, Kuzel P 2007 Opt. Express 15 8898

    [11]

    Seo M, Kyoung J, Park H, Koo S, Kim H, Bernien H, Kim B J, Choe J H, Ahn Y H, Kim H T, Park N, Park Q H, Ahn K, Kim D 2010 Nano Lett. 10 2064

    [12]

    Wen Q Y, Zhang H W, Yang Q H, Xie Y S, Chen K, Liu Y L 2010 Appl. Phys. Lett. 97 021111

    [13]

    Choi S B, Kyoung J S, Kim H S, Park H R, Park D J, Kim B J, Ahn Y H, Rotermund F, Kim H T, Ahn K J, Kim D S 2011 Appl. Phys. Lett. 98 071105

    [14]

    Liu M K, Hwang H Y, Tao H, Strikwerda A C, Fan K B, Keiser G R, Sternbach A J, West K G, Kittiwatanakul S, Lu J W, Wolf S A, Omenetto F G, Zhang X, Nelson K A, Averitt R D 2012 Nature 487 345

    [15]

    Wen Q Y, Zhang H W, Yang Q H, Chen Z, Long Y, Jing Y L, Lin Y, Zhang P X 2012 J. Phys. D: Appl. Phys. 45 235106

    [16]

    Sun D D, Chen Z, Wen Q Y, Qiu D H, Lai W E, Dong K, Zhao B H, Zhang H W 2013 Acta Phys. Sin. 62 017202 (in Chinese) [孙丹丹, 陈智, 文岐业, 邱东鸿, 赖伟恩, 董凯, 赵碧辉, 张怀武 2013 62 017202]

    [17]

    Zhao Y, Chen C, Pan X, Zhu Y, Holtz M, Bernussi A, Fan Z 2013 J. Appl. Phys. 114 113509

    [18]

    Liu Z Q, Chang S J, Wang X L, Fan F, Li W 2013 Acta Phys. Sin 62 130702 (in Chinese) [刘志强, 常胜江, 王晓雷, 范飞, 李伟 2013 62 130702]

    [19]

    Chen H T, Padilla W J, Zide J M O, Gossard A C, Taylor A J, Averitt R D 2006 Nature 444 597

    [20]

    Chen H T, Palit S, Tyler T, Bingham C M, Zide J M O, O'Hara J F, Smith D R, Gossard A C, Averitt R D, Padilla W J, Jokerst N M, Taylor A J 2008 Appl. Phys. Lett. 93 091117

    [21]

    Chen H T, Padilla W J, Cich M J, Azad A K, Averitt R D, Taylor A J 2009 Nat. Photon. 3 148

    [22]

    Shu J, Qiu C, Astley V, Nickel D, Mittleman D M, Xu Q 2011 Opt. Express 19 26666

    [23]

    Yang Y, Huang R, Cong L, Zhu Z, Gu J, Tian Z, Singh R, Zhang S, Han J, Zhang W 2011 Appl. Phys. Lett. 98 121114

    [24]

    Yan R S, Sensale-Rodriguez B, Liu L, Jena D, Xing H G 2012 Opt. Express 20 28664

    [25]

    Gao W, Shu J, Reichel K, Nickel D V, He X, Shi G, Vajtai R, Ajayan P M, Kono J, Mittleman D M 2014 Nano Lett. 14 1242

    [26]

    Karl N, Reichel K, Chen H T, Taylor A J, Brener I, Benz A, Reno J L, Mendis R, Mittleman D M 2014 Appl. Phys. Lett. 104 091115

    [27]

    Larsen K, Austin D, Sandall I C, Davies D G, Revin D G, Cockburn J W, Adawi A M, Airey R J, Fry P W, Hopkinson M, Wilson L R 2012 Appl. Phys. Lett. 101 251109

    [28]

    Zhou Q L, Shi Y L, Wang A H, Li L, Zhang C L 2012 Chin. Phys. B 21 058701

    [29]

    Chan W L, Chen H T, Taylor A J, Brener I, Cich M J, Mittleman D M 2009 Appl. Phys. Lett. 94 213511

    [30]

    Shrekenhamer D, Montoya J, Krishna S, Padilla W J 2013 Adv. Opt. Mater. 1 905

    [31]

    Savo S, Shrekenhamer D, Padilla W J 2014 Adv. Opt. Mater. 2 275

    [32]

    He X J, Li T Y, Wang L, Wang J M, Jiang J X, Yang G H, Meng F Y, Wu Q 2014 J. Appl. Phys. 115 17B903

    [33]

    Degl'innocenti R, Jessop D S, Shah Y D, Sibik J, Zeitler J A, Kidambi P R, Hofmann S, Beere H E, Ritchie D A 2014 ACS Nano 8 2548

    [34]

    Shrekenhamer D, Rout S, Strikwerda A C, Bingham C, Averitt R D, Sonkusale S, Padilla W J 2011 Opt. Express 19 9968

    [35]

    Weis P, Garcia-Pomar J L, Hoh M, Reinhard B, Brodyanski A, Rahm M 2012 ACS Nano 6 9118

    [36]

    Xie Z, Wang X, Ye J, Feng S, Sun W, Akalin T, Zhang Y 2013 Scientific Reports 3 3347

    [37]

    Wen Q Y, Tian W, Mao Q, Chen Z, Liu W W, Yang Q H, Sanderson M, Zhang H W 2014 Scientific Reports 4 7409

    [38]

    Collins C B, Carlson R O, Gallagher C J 1957 Phys. Rev. 105 1168

  • [1] 姜在超, 宫正, 钟芸襄, 崔彬, 邹斌, 杨玉平. 基于几何相位的太赫兹编码超表面反射器研制与测试.  , 2023, 72(24): 248707. doi: 10.7498/aps.72.20230989
    [2] 陈乐迪, 范仁浩, 刘雨, 唐贡惠, 马中丽, 彭茹雯, 王牧. 基于柔性超构材料宽带调控太赫兹波的偏振态.  , 2022, 71(18): 187802. doi: 10.7498/aps.71.20220801
    [3] 彭晓昱, 周欢. 太赫兹波生物效应.  , 2022, (): . doi: 10.7498/aps.71.20211996
    [4] 姚海云, 闫昕, 梁兰菊, 杨茂生, 杨其利, 吕凯凯, 姚建铨. 图案化石墨烯/氮化镓复合超表面对太赫兹波在狄拉克点的动态多维调制.  , 2022, 71(6): 068101. doi: 10.7498/aps.71.20211845
    [5] 宁辉, 王凯程, 王少萌, 宫玉彬. 强场太赫兹波作用下氢气分子振动动力学研究.  , 2021, 70(24): 243101. doi: 10.7498/aps.70.20211482
    [6] 王红霞, 张清华, 侯维君, 魏一苇. 不同模态沙尘暴对太赫兹波的衰减分析.  , 2021, 70(6): 064101. doi: 10.7498/aps.70.20201393
    [7] 彭晓昱, 周欢. 太赫兹波生物效应.  , 2021, 70(24): 240701. doi: 10.7498/aps.70.20211996
    [8] 陈旭生, 李九生. 缺陷组合嵌入VO2薄膜结构的可调太赫兹吸收器.  , 2020, 69(2): 027801. doi: 10.7498/aps.69.20191511
    [9] 张顺浓, 朱伟骅, 李炬赓, 金钻明, 戴晔, 张宗芝, 马国宏, 姚建铨. 铁磁异质结构中的超快自旋流调制实现相干太赫兹辐射.  , 2018, 67(19): 197202. doi: 10.7498/aps.67.20181178
    [10] 陈伟, 郭立新, 李江挺, 淡荔. 时空非均匀等离子体鞘套中太赫兹波的传播特性.  , 2017, 66(8): 084102. doi: 10.7498/aps.66.084102
    [11] 莫漫漫, 文岐业, 陈智, 杨青慧, 李胜, 荆玉兰, 张怀武. 基于圆台结构的超宽带极化不敏感太赫兹吸收器.  , 2013, 62(23): 237801. doi: 10.7498/aps.62.237801
    [12] 孙丹丹, 陈智, 文岐业, 邱东鸿, 赖伟恩, 董凯, 赵碧辉, 张怀武. 二氧化钒薄膜低温制备及其太赫兹调制特性研究.  , 2013, 62(1): 017202. doi: 10.7498/aps.62.017202
    [13] 李亚明, 刘智, 薛春来, 李传波, 成步文, 王启明. 基于Franz-Keldysh效应的倏逝波锗硅电吸收调制器设计.  , 2013, 62(11): 114208. doi: 10.7498/aps.62.114208
    [14] 刘志强, 常胜江, 王晓雷, 范飞, 李伟. 基于VO2薄膜相变原理的温控太赫兹超材料调制器.  , 2013, 62(13): 130702. doi: 10.7498/aps.62.130702
    [15] 王玥, 吴群, 吴昱明, 傅佳辉, 王东兴, 王岩, 李乐伟. 碳纳米管辐射太赫兹波的理论分析与数值验证.  , 2011, 60(5): 057801. doi: 10.7498/aps.60.057801
    [16] 李忠洋, 姚建铨, 李俊, 邴丕彬, 徐德刚, 王鹏. 基于闪锌矿晶体中受激电磁耦子散射产生可调谐太赫兹波的理论研究.  , 2010, 59(9): 6237-6242. doi: 10.7498/aps.59.6237
    [17] 张戎, 曹俊诚. 光子晶体对太赫兹波的调制特性研究.  , 2010, 59(6): 3924-3929. doi: 10.7498/aps.59.3924
    [18] 王玥, 吴群, 施卫, 贺训军, 殷景华. 基于纳观域碳纳米管的太赫兹波天线研究.  , 2009, 58(2): 919-924. doi: 10.7498/aps.58.919
    [19] 孙红起, 赵国忠, 张存林, 杨国桢. 不同中心波长飞秒脉冲激发InAs表面辐射太赫兹波的机理研究.  , 2008, 57(2): 790-795. doi: 10.7498/aps.57.790
    [20] 刘 欢, 姚建铨, 郑芳华, 路 洋, 王 鹏. LD端面抽运Nd:YAG 1319/1338nm双波长激光器研究.  , 2008, 57(1): 230-237. doi: 10.7498/aps.57.230
计量
  • 文章访问数:  6756
  • PDF下载量:  922
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-10
  • 修回日期:  2014-09-07
  • 刊出日期:  2015-01-05

/

返回文章
返回
Baidu
map