搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光催化半导体Ag2ZnSnS4的第一性原理研究

黄丹 鞠志萍 李长生 姚春梅 郭进

引用本文:
Citation:

光催化半导体Ag2ZnSnS4的第一性原理研究

黄丹, 鞠志萍, 李长生, 姚春梅, 郭进

First-principles study of Ag2ZnSnS4 as a photocatalyst

Huang Dan, Ju Zhi-Ping, Li Chang-Sheng, Yao Chun-Mei, Guo Jin
PDF
导出引用
  • 通过基于密度泛函理论的第一性原理计算, 对光催化水解半导体Ag2ZnSnS4的改性方案做了理论研究. 在与同类化合物的带边位置比较后发现, Cu与Ge共掺杂能够在Ag2ZnSnS4中实现禁带宽度和带边位置的双重调节, 从而使其能带结构优化到光催化水解最为理想的状态. 另外, CuGaSe2 可与Ag2ZnSnS4形成type-Ⅱ型带阶结构, 制备它们的异质结同样可用于提升其光催化水解性能.
    By using the first-principles calculation based on density functional theory, we propose some approaches to improving the efficiency for the photocatalyst Ag2ZnSnS4 from a theoretical aspect. Comparing its band edge positions with those of other similar compounds, we find that Cu, Ge codoping can adjust both the band gaps and band edge positions of Ag2ZnSnS4 at the same time, which can optimize its band structure for water splitting. In addition, Ag2ZnSnS4 has a type-Ⅱ band offset with another photocatalyst CuGaSe2. Preparation of its homojunction can also improve their efficiencies of photocatalysis hydrolyzation.
    • 基金项目: 国家自然科学基金(批准号: 61204104, 11104069, 51271061, 61475045)、广西自然科学基金(批准号: 2014GXNSFCA118002)、广西大学科研基金(批准号: XGZ130718)和湖南省光电信息集成与光学制造技术重点实验室资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61204104, 11104069, 51271061, 61475045), the Natural Science Foundation of Guangxi Province, China (Grant No. 2014GXNSFCA118002), the Scientific Research Foundation of Guangxi University, China (Grant No. XGZ130718), and the Hunan Provincial Key Laboratory of Photoelectric Information Integration and Optical Manufacturing Technology.
    [1]

    Chen X B, Shen S H, Guo L J, Mao S S 2010 Chem. Rev. 110 6503

    [2]

    Tong H, Ouyang S X, Bi Y P, Umezawa N, Oshikiri M, Ye J H 2012 Adv. Mater. 24 229

    [3]

    Ping Y, Rocc D, Galli G 2013 Chem. Soc. Rev. 42 2437

    [4]

    van de Walle C G, Neugebauer J 2003 Nature 423 626

    [5]

    Gai Y Q, Li J B, Li S S, Xia J B, Wei S H 2009 Phys. Rev. Lett. 102 036402

    [6]

    Khaselev O, Turner J A 1998 Science 280 425

    [7]

    Yin W J, Tang H W, Wei S H, Al-Jassim M M, Turner J, Yan Y F 2010 Phys. Rev. B 82 045106

    [8]

    Chen X B, Mao S S 2007 Chem. Rev. 107 2891

    [9]

    Li Z B, Wang X, Fan S W 2014 Acta Phys. Sin. 63 157102 (in Chinese) [李宗宝, 王霞, 樊帅伟 2014 63 157102]

    [10]

    Li Z B, Wang X, Jia L C 2013 Acta Phys. Sin. 62 203103 (in Chinese) [李宗宝, 王霞, 贾礼超 2013 62 203103]

    [11]

    Zheng S K, Wu G H, Liu L 2013 Acta Phys. Sin. 62 043102 (in Chinese) [郑树凯, 吴国浩, 刘磊 2013 62 043102]

    [12]

    Li W, Wei S H, Duan X M 2014 Chin. Phys. B 23 027305

    [13]

    Wang Q, Liang J F, Zhang R H, Li Q, Dai J F 2013 Chin. Phys. B 22 057801

    [14]

    Zhang K, Guo L J 2013 Catal. Sci. Technol. 3 1672

    [15]

    Wang C H, Cheng K W, Tseng C J 2011 Sol. Energy Mater. Sol. Cells 95 453

    [16]

    Tseng C J, Wang C H, Cheng K W 2012 Sol. Energy Mater. Sol. Cells 96 33

    [17]

    Wang H L, Zhang L S, Chen Z G, Hu J Q, Li S J, Wang Z H, Liu J S, Wang X C 2014 Chem. Soc. Rev. 43 5234

    [18]

    Cheng K W, Liu P H 2011 Sol. Energy Mater. Sol. Cells 95 1859

    [19]

    Cheng Q, Peng X H, Chan C K 2013 Chem. Sus. Chem. 6 102

    [20]

    Huang D, Persson C 2014 Chem. Phys. Lett. 591 189

    [21]

    Li K, Chai B, Peng T Y, Mao J, Zan L 2013 RSC Adv. 3 253

    [22]

    Sasamura T, Osaki T, Kameyama T, Shibayama T, Kudo A, Kuwabata S, Torimoto T 2012 Chem. Lett. 41 1009

    [23]

    Yeh L Y, Cheng K W 2014 Thin Solid Films 558 289

    [24]

    Tsuji I, Shimodaira Y, Kato H, Kobayashi H, Kudo A 2010 Chem. Mater. 22 1402

    [25]

    Ikeda S, Nakamura T, Harada T, Matsumura M 2010 Phys. Chem. Chem. Phys. 12 13943

    [26]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [27]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [28]

    Perdew J P, Burke K 1996 Phys. Rev. Lett. 77 3865

    [29]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [30]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [31]

    Chen S Y, Gong X G, Walsh A, Wei S H 2011 Physics 40 248 (in Chinese) [陈时友, 龚新高, Aron Walsh, 魏苏淮 2011 物理 40 248]

    [32]

    Walsh A, Chen S Y, Wei S H, Gong X G 2012 Adv. Energy Mater. 2 400

    [33]

    Chen S Y, Gong X G, Walsh A, Wei S H 2009 Appl. Phys. Lett. 94 041903

    [34]

    Scanlon D O, Watson G W 2011 Phys. Chem. Chem. Phys. 13 9667

    [35]

    Walsh A, Da Silva J L F, Wei S H 2008 Phys. Rev. B 78 075211

    [36]

    Burton L A, Walsh A 2013 Appl. Phys. Lett. 102 132111

    [37]

    Dandrea R G, Duke C B, Zunger A 1992 J. Vac. Sci. Technol. B 10 1744

    [38]

    Zhao Y J, Zunger A 2004 Phys. Rev. B 69 104422

    [39]

    Zhang S B, Wei S H, Zunger A 2000 Phys. Rev. Lett. 84 1232

    [40]

    Chen S Y, Walsh A, Gong X G, Wei S H 2013 Adv. Mater. 25 1522

    [41]

    Chen S Y, Gong X G, Walsh A, Wei S H 2010 Appl. Phys. Lett. 96 021902

    [42]

    Shi L, Yin P Q 2013 Dalton Trans. 42 13607

    [43]

    Khyzhun O Y, Ocheretova V A, Fedorchuk A O, Parasyuk O V 2014 Opt. Mater. 36 1396

    [44]

    Marsen B, Cole B, Miller E L 2008 Sol. Energy Mater. Sol. Cells 92 1054

    [45]

    Moriya M, Minegishi T, Kumagai H, Katayama M, Kubota J, Domen K 2013 J. Am. Chem. Soc. 135 3733

    [46]

    Glatzel Th, Fuertes Marrón D, Schedel-Niedrig Th, Sadewasser S, Lux-Steiner M Ch 2002 Appl. Phys. Lett. 81 2017

    [47]

    Arushanov E, Siebentritt S, Schedel-Niedrig T, Lux-Steiner M Ch 2006 J. Appl. Phys. 100 063715

    [48]

    Jaffe J E, Zunger A 1984 Phys. Rev. B 29 1882

  • [1]

    Chen X B, Shen S H, Guo L J, Mao S S 2010 Chem. Rev. 110 6503

    [2]

    Tong H, Ouyang S X, Bi Y P, Umezawa N, Oshikiri M, Ye J H 2012 Adv. Mater. 24 229

    [3]

    Ping Y, Rocc D, Galli G 2013 Chem. Soc. Rev. 42 2437

    [4]

    van de Walle C G, Neugebauer J 2003 Nature 423 626

    [5]

    Gai Y Q, Li J B, Li S S, Xia J B, Wei S H 2009 Phys. Rev. Lett. 102 036402

    [6]

    Khaselev O, Turner J A 1998 Science 280 425

    [7]

    Yin W J, Tang H W, Wei S H, Al-Jassim M M, Turner J, Yan Y F 2010 Phys. Rev. B 82 045106

    [8]

    Chen X B, Mao S S 2007 Chem. Rev. 107 2891

    [9]

    Li Z B, Wang X, Fan S W 2014 Acta Phys. Sin. 63 157102 (in Chinese) [李宗宝, 王霞, 樊帅伟 2014 63 157102]

    [10]

    Li Z B, Wang X, Jia L C 2013 Acta Phys. Sin. 62 203103 (in Chinese) [李宗宝, 王霞, 贾礼超 2013 62 203103]

    [11]

    Zheng S K, Wu G H, Liu L 2013 Acta Phys. Sin. 62 043102 (in Chinese) [郑树凯, 吴国浩, 刘磊 2013 62 043102]

    [12]

    Li W, Wei S H, Duan X M 2014 Chin. Phys. B 23 027305

    [13]

    Wang Q, Liang J F, Zhang R H, Li Q, Dai J F 2013 Chin. Phys. B 22 057801

    [14]

    Zhang K, Guo L J 2013 Catal. Sci. Technol. 3 1672

    [15]

    Wang C H, Cheng K W, Tseng C J 2011 Sol. Energy Mater. Sol. Cells 95 453

    [16]

    Tseng C J, Wang C H, Cheng K W 2012 Sol. Energy Mater. Sol. Cells 96 33

    [17]

    Wang H L, Zhang L S, Chen Z G, Hu J Q, Li S J, Wang Z H, Liu J S, Wang X C 2014 Chem. Soc. Rev. 43 5234

    [18]

    Cheng K W, Liu P H 2011 Sol. Energy Mater. Sol. Cells 95 1859

    [19]

    Cheng Q, Peng X H, Chan C K 2013 Chem. Sus. Chem. 6 102

    [20]

    Huang D, Persson C 2014 Chem. Phys. Lett. 591 189

    [21]

    Li K, Chai B, Peng T Y, Mao J, Zan L 2013 RSC Adv. 3 253

    [22]

    Sasamura T, Osaki T, Kameyama T, Shibayama T, Kudo A, Kuwabata S, Torimoto T 2012 Chem. Lett. 41 1009

    [23]

    Yeh L Y, Cheng K W 2014 Thin Solid Films 558 289

    [24]

    Tsuji I, Shimodaira Y, Kato H, Kobayashi H, Kudo A 2010 Chem. Mater. 22 1402

    [25]

    Ikeda S, Nakamura T, Harada T, Matsumura M 2010 Phys. Chem. Chem. Phys. 12 13943

    [26]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [27]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [28]

    Perdew J P, Burke K 1996 Phys. Rev. Lett. 77 3865

    [29]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [30]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [31]

    Chen S Y, Gong X G, Walsh A, Wei S H 2011 Physics 40 248 (in Chinese) [陈时友, 龚新高, Aron Walsh, 魏苏淮 2011 物理 40 248]

    [32]

    Walsh A, Chen S Y, Wei S H, Gong X G 2012 Adv. Energy Mater. 2 400

    [33]

    Chen S Y, Gong X G, Walsh A, Wei S H 2009 Appl. Phys. Lett. 94 041903

    [34]

    Scanlon D O, Watson G W 2011 Phys. Chem. Chem. Phys. 13 9667

    [35]

    Walsh A, Da Silva J L F, Wei S H 2008 Phys. Rev. B 78 075211

    [36]

    Burton L A, Walsh A 2013 Appl. Phys. Lett. 102 132111

    [37]

    Dandrea R G, Duke C B, Zunger A 1992 J. Vac. Sci. Technol. B 10 1744

    [38]

    Zhao Y J, Zunger A 2004 Phys. Rev. B 69 104422

    [39]

    Zhang S B, Wei S H, Zunger A 2000 Phys. Rev. Lett. 84 1232

    [40]

    Chen S Y, Walsh A, Gong X G, Wei S H 2013 Adv. Mater. 25 1522

    [41]

    Chen S Y, Gong X G, Walsh A, Wei S H 2010 Appl. Phys. Lett. 96 021902

    [42]

    Shi L, Yin P Q 2013 Dalton Trans. 42 13607

    [43]

    Khyzhun O Y, Ocheretova V A, Fedorchuk A O, Parasyuk O V 2014 Opt. Mater. 36 1396

    [44]

    Marsen B, Cole B, Miller E L 2008 Sol. Energy Mater. Sol. Cells 92 1054

    [45]

    Moriya M, Minegishi T, Kumagai H, Katayama M, Kubota J, Domen K 2013 J. Am. Chem. Soc. 135 3733

    [46]

    Glatzel Th, Fuertes Marrón D, Schedel-Niedrig Th, Sadewasser S, Lux-Steiner M Ch 2002 Appl. Phys. Lett. 81 2017

    [47]

    Arushanov E, Siebentritt S, Schedel-Niedrig T, Lux-Steiner M Ch 2006 J. Appl. Phys. 100 063715

    [48]

    Jaffe J E, Zunger A 1984 Phys. Rev. B 29 1882

  • [1] 肖文悦, 董小硕, 买买提热夏提·买买提, 牛娜娜, 李国栋, 朱泽涛, 毕杰昊. Zn2+和TiO2合金化过程中不同成分占比对薄膜结构和光催化性能的影响.  , 2024, 73(18): 183301. doi: 10.7498/aps.73.20240814
    [2] 方文玉, 张鹏程, 赵军, 康文斌. H, F修饰单层GeTe的电子结构与光催化性质.  , 2020, 69(5): 056301. doi: 10.7498/aps.69.20191391
    [3] 崔宗杨, 谢忠帅, 汪尧进, 袁国亮, 刘俊明. 钙钛矿铁电半导体的光催化研究现状及其展望.  , 2020, 69(12): 127706. doi: 10.7498/aps.69.20200287
    [4] 熊子谦, 张鹏程, 康文斌, 方文玉. 一种新型二维TiO2的电子结构与光催化性质.  , 2020, 69(16): 166301. doi: 10.7498/aps.69.20200631
    [5] 刘海云, 刘湘涟, 田定琪, 杜正良, 崔教林. 含硫宽禁带Ga2Te3基热电半导体的声电输运特性.  , 2015, 64(19): 197201. doi: 10.7498/aps.64.197201
    [6] 李佩欣, 冯铭扬, 吴彩平, 李少波, 侯磊田, 马嘉赛, 殷春浩. 基于电子顺磁共振的锌卟啉敏化TiO2光催化性机理的研究.  , 2015, 64(13): 137601. doi: 10.7498/aps.64.137601
    [7] 叶鹏飞, 陈海涛, 卜良民, 张堃, 韩玖荣. SnO2量子点/石墨烯复合结构的合成及其光催化性能研究.  , 2015, 64(7): 078102. doi: 10.7498/aps.64.078102
    [8] 李宗宝, 王霞, 樊帅伟. Cu/N表面沉积共掺杂TiO2光催化剂作用机理的理论研究.  , 2014, 63(15): 157102. doi: 10.7498/aps.63.157102
    [9] 赵娟, 胡慧芳, 曾亚萍, 程彩萍. 花状硫化铜级次纳米结构的制备及可见光催化活性研究.  , 2013, 62(15): 158104. doi: 10.7498/aps.62.158104
    [10] 刘芳, 姜振益. 第一性原理研究Eu/N共掺杂锐钛矿TiO2光催化剂的电子和光学性质.  , 2013, 62(19): 193103. doi: 10.7498/aps.62.193103
    [11] 梁培, 王乐, 熊斯雨, 董前民, 李晓艳. Mo-X(B, C, N, O, F)共掺杂TiO2体系的光催化协同效应研究.  , 2012, 61(5): 053101. doi: 10.7498/aps.61.053101
    [12] 陈懂, 肖河阳, 加伟, 陈虹, 周和根, 李奕, 丁开宁, 章永凡. 半导体材料AAl2C4(A=Zn, Cd, Hg; C=S, Se)的电子结构和光学性质.  , 2012, 61(12): 127103. doi: 10.7498/aps.61.127103
    [13] 祁洪飞, 刘大博, 成波, 郝维昌, 王天民. Ag反点阵列修饰TiO2 薄膜的制备及光催化性能研究.  , 2012, 61(22): 228201. doi: 10.7498/aps.61.228201
    [14] 宋庆功, 王延峰, 宋庆龙, 康建海, 褚 勇. 插层化合物Ag1/4TiSe2电子结构的第一性原理研究.  , 2008, 57(12): 7827-7832. doi: 10.7498/aps.57.7827
    [15] 赵宗彦, 柳清菊, 朱忠其, 张 瑾. S掺杂对锐钛矿相TiO2电子结构与光催化性能的影响.  , 2008, 57(6): 3760-3768. doi: 10.7498/aps.57.3760
    [16] 朱 博, 桂永胜, 仇志军, 周文政, 姚 炜, 郭少令, 褚君浩, 张福甲. 窄禁带稀磁半导体二维电子气的拍频振荡.  , 2006, 55(2): 786-790. doi: 10.7498/aps.55.786
    [17] 朱 博, 桂永胜, 周文政, 商丽燕, 仇志军, 郭少令, 张福甲, 褚君浩. 窄禁带稀磁半导体二维电子气的磁阻振荡研究.  , 2006, 55(6): 2955-2960. doi: 10.7498/aps.55.2955
    [18] 毛宏颖, 黄 寒, 严欣澂, 陈 桥, 钱惠琴, 张建华, 李海洋, 何丕模, 鲍世宁. 有机半导体perylene和tetracene在Ag(110)表面上有序薄膜的结构与电子态研究.  , 2005, 54(1): 460-466. doi: 10.7498/aps.54.460
    [19] 潘志军, 张澜庭, 吴建生. 掺杂半导体β-FeSi2电子结构及几何结构第一性原理研究.  , 2005, 54(11): 5308-5313. doi: 10.7498/aps.54.5308
    [20] 秦国毅. Ⅰ类和Ⅱ类准周期半导体超晶格的电子子带和波函数.  , 1989, 38(3): 366-375. doi: 10.7498/aps.38.366
计量
  • 文章访问数:  7870
  • PDF下载量:  1273
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-21
  • 修回日期:  2014-08-13
  • 刊出日期:  2014-12-05

/

返回文章
返回
Baidu
map