搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

第一性原理研究Zn偏析对CuΣ5晶界的影响

孟凡顺 李久会 赵星

引用本文:
Citation:

第一性原理研究Zn偏析对CuΣ5晶界的影响

孟凡顺, 李久会, 赵星

First-principles study on the effects of Zn-segregation in CuΣ5 grain boundary

Meng Fan-Shun, Li Jiu-Hui, Zhao Xing
PDF
导出引用
  • 采用基于密度泛函理论的第一性原理方法研究了Zn偏析Cu晶界的原子构型和电子结构, 分析了Zn偏析对Cu晶界力学性能的影响. 结果表明, Zn以替换方式偏析到晶界处, Zn–Cu与Cu–Cu的成键方式类似, 均为含有共价成分的金属键. Zn偏析导致少量电荷集聚于Zn与近邻Cu之间, 有限地增强了晶界的结合. 拉伸过程中Zn的d轨道定域性增强, Zn与近邻Cu间的电荷密度下降, 削弱了Zn–Cu键, 导致晶界断裂发生在Zn–Cu间.
    The atomic and electronic structures of a Cu grain boundary with segregated Zn have been calculated by the first-principles method based on density functional theory and the effect of Zn segregation on Cu grain boundary is also analyzed. Results show that Zn is segregated to the Cu grain boundary in the way of substitution. Both Cu and Zn have the similar bonding characteristic with their neighbors, which are metallic bonds with a little covalentlike component. The Cu grain boundary with segregated Zn has strengthened the cohesion across the boundary slightly as compared with the clean Cu grain boundary because a small amount of charge accumulation is found between Zn and near neighboring Cu atoms due to the segregation of Zn. Grain boundary with segregated Zn would be fractured between Zn and Cu atoms because the d orbit of Zn is much more localized during the tensile test, resultsing in the weakness of Zn–Cu bond.
    • 基金项目: 国家重点基础研究发展计划(批准号:2011CB606403)和辽宁省教育厅基金(批准号:L2010179)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2011CB606403) and the Project of Education Department of Liaoning Province, China (Grant No. L2010179).
    [1]

    Liu L H, Zhang Y, L G H, Deng S H, Wang T M 2006 Acta Phys. Sin. 55 4428 (in Chinese) [刘利花, 张颖, 吕广宏, 邓胜华, 王天民 2006 55 4428]

    [2]

    Flanagan R, Smoluchowski R 1952 J. Appl. Phys. 23 785

    [3]

    Achter M R, Birks L S, Brooks E J 1959 J. Appl. Phys. 30 1825

    [4]

    Abbati I, Braicovich L, Jona P 1978 Phys. Rev. B 18 6615

    [5]

    Zikry M B, Georgy K H 1989 Phys. Stat. Sol. (a) 112 K91

    [6]

    Zikry M B, Georgy K H 1992 Acta Phys. Hung. 72 7

    [7]

    Rice J R, Wang J S 1989 Mater. Sci. Eng. A 107 23

    [8]

    Zhang S J, Kontsevoi O Y, Freeman A J, Olson G B 2011 Acta Mater. 59 6155

    [9]

    Zhang S J, Kontsevoi O Y, Freeman A J, Olson G B 2010 Phys. Rev. B 82 224107

    [10]

    Zhang S J, Kontsevoi O Y, Freeman A J, Olson G B 2011 Phys. Rev. B 84 134104

    [11]

    Zhang S J, Kontsevoi O Y, Freeman A J, Olson G B 2012 Appl. Phys. Lett. 100 231904

    [12]

    Yamaguchi M, Shiga M, Kaburaki H 2005 Science 307 393

    [13]

    Geng W T, Wang J S, Olso G B 2005 Science 309 1677c

    [14]

    Tian Z X, Yan J X, Xiao W, Geng W T 2009 Phys. Rev. B 79 144114

    [15]

    Geng W T, Freeman A J, Olson G B 2006 Mater. Trans. 47 2113

    [16]

    Yuasa M, Mabuchi M 2010 J. Phys.: Condens. Matter 22 505705

    [17]

    Yuasa M, Mabuchi M 2010 Phys. Rev. B 82 094108

    [18]

    Yuasa M, Nishihara D, Mabuchi M, Chino Y 2012 J. Phys.: Condens. Matter 24 085701

    [19]

    L G H, Zhang L 2012 Sci. China: Phys. Mech. Astron. 55 2305

    [20]

    Zhou H B, Jin S, Zhang Y, L G H 2011 Sci. China: Phys. Mech. Astron. 54 2164

    [21]

    Zhang L, Shu X L, Jin S, Zhang Y, L G H 2010 J. Phys.: Condens. Matter 22 375401

    [22]

    Meng F S, Zhao X, Li J H 2013 Acta Phys. Sin. 62 117102 (in Chinese) [孟凡顺, 赵星, 李久会 2013 62 117102]

    [23]

    Li J H, Zhao X, Wang D S, Meng F S 2013 Acta Metal Sin. Eng. Lett. 26 675

    [24]

    Yuasa M, Mabuchi M 2013 Philos. Mag. 93 635

    [25]

    Lejček P, Šob M 2014 J. Mater. Sci. 49 2477

    [26]

    Zhang Y, L G H, Kohyama M, Wang T M 2009 Model. Simul. Mater. Sci. Eng. 17 015003

    [27]

    Zhang Y, L G H, Deng S H, Wang T M 2006 Acta Phys. Sin. 55 2901 (in Chinese) [张颖, 吕广宏, 邓胜华, 王天民 2006 55 2901]

    [28]

    Li C X, Dang S H, Wang L P, Zhang C L, Han P D 2014 Chin. Phys. B 23 037102

    [29]

    Zhou H B, Jin S, Zhang Y, Shu X L, Niu L L 2014 Chin. Phys. B 23 056104

    [30]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [31]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [32]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [33]

    McLean D 1957 Grain Boundaries in Metals (London: Oxford University Press)

    [34]

    Yamaguchi M, Nishiyama Y, Kaburaki H 2007 Phys. Rev. B 76 035418

    [35]

    Kohyama M 1999 Philos. Mag. Lett. 79 659

    [36]

    Zhang Y, L G H, Deng S H, Wang T M, Xu H, Kohyama M, Yamamoto R 2007 Phys. Rev. B 75 174101

  • [1]

    Liu L H, Zhang Y, L G H, Deng S H, Wang T M 2006 Acta Phys. Sin. 55 4428 (in Chinese) [刘利花, 张颖, 吕广宏, 邓胜华, 王天民 2006 55 4428]

    [2]

    Flanagan R, Smoluchowski R 1952 J. Appl. Phys. 23 785

    [3]

    Achter M R, Birks L S, Brooks E J 1959 J. Appl. Phys. 30 1825

    [4]

    Abbati I, Braicovich L, Jona P 1978 Phys. Rev. B 18 6615

    [5]

    Zikry M B, Georgy K H 1989 Phys. Stat. Sol. (a) 112 K91

    [6]

    Zikry M B, Georgy K H 1992 Acta Phys. Hung. 72 7

    [7]

    Rice J R, Wang J S 1989 Mater. Sci. Eng. A 107 23

    [8]

    Zhang S J, Kontsevoi O Y, Freeman A J, Olson G B 2011 Acta Mater. 59 6155

    [9]

    Zhang S J, Kontsevoi O Y, Freeman A J, Olson G B 2010 Phys. Rev. B 82 224107

    [10]

    Zhang S J, Kontsevoi O Y, Freeman A J, Olson G B 2011 Phys. Rev. B 84 134104

    [11]

    Zhang S J, Kontsevoi O Y, Freeman A J, Olson G B 2012 Appl. Phys. Lett. 100 231904

    [12]

    Yamaguchi M, Shiga M, Kaburaki H 2005 Science 307 393

    [13]

    Geng W T, Wang J S, Olso G B 2005 Science 309 1677c

    [14]

    Tian Z X, Yan J X, Xiao W, Geng W T 2009 Phys. Rev. B 79 144114

    [15]

    Geng W T, Freeman A J, Olson G B 2006 Mater. Trans. 47 2113

    [16]

    Yuasa M, Mabuchi M 2010 J. Phys.: Condens. Matter 22 505705

    [17]

    Yuasa M, Mabuchi M 2010 Phys. Rev. B 82 094108

    [18]

    Yuasa M, Nishihara D, Mabuchi M, Chino Y 2012 J. Phys.: Condens. Matter 24 085701

    [19]

    L G H, Zhang L 2012 Sci. China: Phys. Mech. Astron. 55 2305

    [20]

    Zhou H B, Jin S, Zhang Y, L G H 2011 Sci. China: Phys. Mech. Astron. 54 2164

    [21]

    Zhang L, Shu X L, Jin S, Zhang Y, L G H 2010 J. Phys.: Condens. Matter 22 375401

    [22]

    Meng F S, Zhao X, Li J H 2013 Acta Phys. Sin. 62 117102 (in Chinese) [孟凡顺, 赵星, 李久会 2013 62 117102]

    [23]

    Li J H, Zhao X, Wang D S, Meng F S 2013 Acta Metal Sin. Eng. Lett. 26 675

    [24]

    Yuasa M, Mabuchi M 2013 Philos. Mag. 93 635

    [25]

    Lejček P, Šob M 2014 J. Mater. Sci. 49 2477

    [26]

    Zhang Y, L G H, Kohyama M, Wang T M 2009 Model. Simul. Mater. Sci. Eng. 17 015003

    [27]

    Zhang Y, L G H, Deng S H, Wang T M 2006 Acta Phys. Sin. 55 2901 (in Chinese) [张颖, 吕广宏, 邓胜华, 王天民 2006 55 2901]

    [28]

    Li C X, Dang S H, Wang L P, Zhang C L, Han P D 2014 Chin. Phys. B 23 037102

    [29]

    Zhou H B, Jin S, Zhang Y, Shu X L, Niu L L 2014 Chin. Phys. B 23 056104

    [30]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [31]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [32]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [33]

    McLean D 1957 Grain Boundaries in Metals (London: Oxford University Press)

    [34]

    Yamaguchi M, Nishiyama Y, Kaburaki H 2007 Phys. Rev. B 76 035418

    [35]

    Kohyama M 1999 Philos. Mag. Lett. 79 659

    [36]

    Zhang Y, L G H, Deng S H, Wang T M, Xu H, Kohyama M, Yamamoto R 2007 Phys. Rev. B 75 174101

  • [1] 吴迪, 杨永, 章小峰, 黄贞益, 王昭东. 第一性原理研究合金元素对逆变奥氏体在Cu沉淀上异质形核的影响.  , 2022, 71(8): 086301. doi: 10.7498/aps.71.20212144
    [2] 王坤, 乔英杰, 张晓红, 王晓东, 郑婷, 白成英, 张一鸣, 都时禹. 理想拉伸/剪切应变对U3Si2化学键键长及电荷密度分布影响的第一性原理研究.  , 2022, 71(22): 227102. doi: 10.7498/aps.71.20221210
    [3] 徐攀攀, 韩培德, 张竹霞, 张彩丽, 董楠, 王剑. 硼在fcc-Fe晶界偏析及对界面结合能力影响的第一性原理研究.  , 2021, 70(16): 166401. doi: 10.7498/aps.70.20210361
    [4] 张梅玲, 陈玉红, 张材荣, 李公平. 内在缺陷与Cu掺杂共存对ZnO电磁光学性质影响的第一性原理研究.  , 2019, 68(8): 087101. doi: 10.7498/aps.68.20182238
    [5] 王小卡, 汤富领, 薛红涛, 司凤娟, 祁荣斐, 刘静波. H,Cl和F原子钝化Cu2ZnSnS4(112)表面态的第一性原理计算.  , 2018, 67(16): 166401. doi: 10.7498/aps.67.20180626
    [6] 李小影, 黄灿, 朱岩, 李晋斌, 樊济宇, 潘燕飞, 施大宁, 马春兰. -(Zn,Cr)S(111)表面上的Dzyaloshinsky-Moriya作用:第一性原理计算.  , 2018, 67(13): 137101. doi: 10.7498/aps.67.20180342
    [7] 严顺涛, 姜振益. Cu掺杂对TiNi合金马氏体相变路径影响的第一性原理研究.  , 2017, 66(13): 130501. doi: 10.7498/aps.66.130501
    [8] 马振宁, 周全, 汪青杰, 王逊, 王磊. Mg-Y-Cu合金长周期有序相热力学稳定性及其电子结构的第一性原理研究.  , 2016, 65(23): 236101. doi: 10.7498/aps.65.236101
    [9] 赵佰强, 张耘, 邱晓燕, 王学维. Cu,Fe掺杂LiNbO3晶体电子结构和光学性质的第一性原理研究.  , 2016, 65(1): 014212. doi: 10.7498/aps.65.014212
    [10] 马振宁, 蒋敏, 王磊. Mg-Y-Zn合金三元金属间化合物的电子结构及其相稳定性的第一性原理研究.  , 2015, 64(18): 187102. doi: 10.7498/aps.64.187102
    [11] 唐杰, 张国英, 鲍君善, 刘贵立, 刘春明. 杂质S对Fe/Al2O3界面结合影响的第一性原理研究.  , 2014, 63(18): 187101. doi: 10.7498/aps.63.187101
    [12] 王海燕, 高雪云, 任慧平, 张红伟, 谭会杰. 稀土La在-Fe中占位倾向及对晶界影响的第一性原理研究.  , 2014, 63(14): 148101. doi: 10.7498/aps.63.148101
    [13] 何静芳, 郑树凯, 周鹏力, 史茹倩, 闫小兵. Cu-Co共掺杂ZnO光电性质的第一性原理计算.  , 2014, 63(4): 046301. doi: 10.7498/aps.63.046301
    [14] 孟凡顺, 赵星, 李久会. B掺入Cu∑5晶界间隙位性质的第一性原理研究.  , 2013, 62(11): 117102. doi: 10.7498/aps.62.117102
    [15] 高巍, 巩水利, 朱嘉琦, 马国佳. 掺氮四面体非晶碳的第一性原理研究.  , 2011, 60(2): 027104. doi: 10.7498/aps.60.027104
    [16] 袁娣, 罗华锋, 黄多辉, 王藩侯. Zn,O共掺杂实现p型AlN的第一性原理研究.  , 2011, 60(7): 077101. doi: 10.7498/aps.60.077101
    [17] 刘建军. (Zn,Al)O电子结构第一性原理计算及电导率的分析.  , 2011, 60(3): 037102. doi: 10.7498/aps.60.037102
    [18] 舒瑜, 张建民, 王国红, 徐可为. Cu台阶面多层弛豫的第一性原理研究.  , 2010, 59(7): 4911-4918. doi: 10.7498/aps.59.4911
    [19] 李世娜, 刘永. Cu3N弹性和热力学性质的第一性原理研究.  , 2010, 59(10): 6882-6888. doi: 10.7498/aps.59.6882
    [20] 林竹, 郭志友, 毕艳军, 董玉成. Cu掺杂的AlN铁磁性和光学性质的第一性原理研究.  , 2009, 58(3): 1917-1923. doi: 10.7498/aps.58.1917
计量
  • 文章访问数:  6676
  • PDF下载量:  512
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-24
  • 修回日期:  2014-08-04
  • 刊出日期:  2014-12-05

/

返回文章
返回
Baidu
map