搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气粒两相流传热问题的光滑离散颗粒流体动力学方法数值模拟

陈福振 强洪夫 高巍然

引用本文:
Citation:

气粒两相流传热问题的光滑离散颗粒流体动力学方法数值模拟

陈福振, 强洪夫, 高巍然

Numerical simulation of heat transfer in gas-particle two-phase flow with smoothed discrete particle hydrodynamics

Chen Fu-Zhen, Qiang Hong-Fu, Gao Wei-Ran
PDF
导出引用
  • 在气粒两相流动问题中, 颗粒间以及气体与颗粒间的传热问题不可忽略. 光滑离散颗粒流体动力学(SDPH)模型作为一种新的求解气粒两相流动问题的方法, 已经成功应用于模拟风沙运动等问题. 在此基础上, 提出了SDPH方法的热传导模型, 模拟了气粒两相流动问题中的热传导过程以及颗粒蒸发过程. 首先引入各相的能量方程, 利用有限差分与光滑粒子流体动力学一阶导数相结合的方法, 处理各相内部热传导项中的二阶导数问题, 基于气粒两相间温度差及对流换热系数计算颗粒与气体间的热传导量, 推导得到了含热传导模型的气粒两相流SDPH计算方程组, 模拟计算了圆盘形颗粒团算例及鼓泡流化床内部热传导算例, 并与双流体模型计算结果进行对比, 结果基本符合; 其次利用离散液滴模型中的颗粒蒸发传质传热定律计算颗粒的蒸发过程, 数值模拟了颗粒射流蒸发过程, 并与离散颗粒模型结果进行对比, 两者符合得较好, 验证了该方法的准确性及实用性.
    Heat transfer between particles and that between gas phase and particle phase in gas-particle two-phase flow cannot be ignored. Smoothed discrete particle hydrodynamics, as a new method for solving the gas-particle two-phase flow, has been used in simulating the aerolian sand transport successfully. Based on the smoothed discrete particle hydrodynamics method, a heat conduction model is presented in this paper and is used to simulate the heat transfer processes and the particle evaporation in gas-particle two-phase flow. Firstly, the equations to be solved are presented in which the energy equations are introduced for each phase and the second derivative item in conduction is treated by combining a standard smoothed particle hydrodynamics first derivative with a finite difference approximation of a first derivative. The heat conduction between particle and gas is computed from temperature difference and heat transfer coefficient. The disc-type particle cluster problem and bubble fluidized bed are simulated and the results are in close agreement with the two fluid model simulation results. The vaporization law for discrete phase droplet is used to deal with the particle evaporation and then a jet evaporation is simulated. Numerical results all show a good agreement with the discrete particle model results. It is indicated that the new method is of good accuracy and practical applicability.
    • 基金项目: 国家自然科学基金(批准号:51276192)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.51276192).
    [1]

    Zhang W B, Liao G L, Yu T X, Ji A L 2013 Acta Phys. Sin. 62 196102 (in Chinese) [张文斌, 廖光龙, 于同旭, 纪爱玲 2013 62 196102]

    [2]

    Zhou J, Cai L, Zhou F Q 2008 Chin. Phys. B 17 1535

    [3]

    Gao Z K, Jin N D 2009 Chin. Phys. B 18 5249

    [4]

    Xie H Q, Zeng Z, Zhang L Q, Liang G Y, Hiroshi M, Yoshiyuki K 2012 Chin. Phys. B 21 124703

    [5]

    Wu B Z, Xu Y S, Liu Y, Huang G X 2005 Chin. Phys. 14 2046

    [6]

    Wang Y M, Lin J Z, Chen Z L 2011 Chin. Phys. Lett. 28 14702

    [7]

    Dow W M, Jakob M 1951 Chem. Eng. Prog. 47 637

    [8]

    Mickley H S, Fairbanks C A 1955 AIChE J. 1 374

    [9]

    Li H S 1992 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese) [李宏顺1992博士学位论文(武汉: 华中理工大学)]

    [10]

    Liu A Y 2002 Ph. D. Dissertation (Beijing: Graduate University of Chinese Academy of Sciences) (in Chinese) [刘安源2002博士学位论文(北京: 中国科学院研究生院)]

    [11]

    Syamlal M, Gidaspow D 1985 AIChE J. 31 127

    [12]

    Kuipers J A M, Prins W, van Swaaij W P M 1992 AIChE J. 38 1079

    [13]

    Schmidt A, Renz U 1999 Chem. Eng. Sci. 54 5515

    [14]

    Chang J, Wang G, Gao J, Zhang K, Chen H, Yang Y 2012 Powder Technol. 217 50

    [15]

    Hunt M L 1997 Int. J. Heat Mass Tran. 40 3059

    [16]

    Hsiau S S, Hunt M L 1993 J. Fluid Mech. 251 299

    [17]

    Ravi I S, Anders B, Mikko H 2013 Appl. Therm. Eng. 52 585

    [18]

    Sun J, Chen M M 1988 Int. J. Heat Mass Tran. 31 969

    [19]

    Zhou H S Flamant G, Gauthier D 2004 Chem. Eng. Sci. 59 4205

    [20]

    Monssri Z, Saffar-Avval M, Basirat-Tabrizi H, Ahmadi G, Lain S 2002 Int. J. Heat Fluid Fl. 23 792

    [21]

    Li J, Mason D J 2000 Powder Technol. 112 273

    [22]

    Chang J, Gao J S, Xu C M 2007 Comput. Appl. Chem. 24 425 (in Chinese) [常剑, 高金森, 徐春明 2007 计算机与应用化学 24 425]

    [23]

    Chen F Z, Qiang H F, Gao W R 2014 Acta Phys. Sin. 63 130202 (in Chinese) [陈福振, 强洪夫, 高巍然 2014 63 130202]

    [24]

    Lun C K K, Savage S B, Jeffrey D J 1984 J. Fluid Mech. 140 223

    [25]

    Gunn D J 1978 Int. J. Heat Mass Trans. 21 467

    [26]

    Cleary P W, Monaghan J J 1999 J. Comput. Phys. 148 227

    [27]

    Morris J P, Fox P J, Zhu Y 1997 J. Comput. Phys. 136 214

    [28]

    Nieuwland J J, Veenendaal M L, Kuipers J A M, Vanswaaij W P M 1996 Chem. Eng. Sci. 51 4087

  • [1]

    Zhang W B, Liao G L, Yu T X, Ji A L 2013 Acta Phys. Sin. 62 196102 (in Chinese) [张文斌, 廖光龙, 于同旭, 纪爱玲 2013 62 196102]

    [2]

    Zhou J, Cai L, Zhou F Q 2008 Chin. Phys. B 17 1535

    [3]

    Gao Z K, Jin N D 2009 Chin. Phys. B 18 5249

    [4]

    Xie H Q, Zeng Z, Zhang L Q, Liang G Y, Hiroshi M, Yoshiyuki K 2012 Chin. Phys. B 21 124703

    [5]

    Wu B Z, Xu Y S, Liu Y, Huang G X 2005 Chin. Phys. 14 2046

    [6]

    Wang Y M, Lin J Z, Chen Z L 2011 Chin. Phys. Lett. 28 14702

    [7]

    Dow W M, Jakob M 1951 Chem. Eng. Prog. 47 637

    [8]

    Mickley H S, Fairbanks C A 1955 AIChE J. 1 374

    [9]

    Li H S 1992 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese) [李宏顺1992博士学位论文(武汉: 华中理工大学)]

    [10]

    Liu A Y 2002 Ph. D. Dissertation (Beijing: Graduate University of Chinese Academy of Sciences) (in Chinese) [刘安源2002博士学位论文(北京: 中国科学院研究生院)]

    [11]

    Syamlal M, Gidaspow D 1985 AIChE J. 31 127

    [12]

    Kuipers J A M, Prins W, van Swaaij W P M 1992 AIChE J. 38 1079

    [13]

    Schmidt A, Renz U 1999 Chem. Eng. Sci. 54 5515

    [14]

    Chang J, Wang G, Gao J, Zhang K, Chen H, Yang Y 2012 Powder Technol. 217 50

    [15]

    Hunt M L 1997 Int. J. Heat Mass Tran. 40 3059

    [16]

    Hsiau S S, Hunt M L 1993 J. Fluid Mech. 251 299

    [17]

    Ravi I S, Anders B, Mikko H 2013 Appl. Therm. Eng. 52 585

    [18]

    Sun J, Chen M M 1988 Int. J. Heat Mass Tran. 31 969

    [19]

    Zhou H S Flamant G, Gauthier D 2004 Chem. Eng. Sci. 59 4205

    [20]

    Monssri Z, Saffar-Avval M, Basirat-Tabrizi H, Ahmadi G, Lain S 2002 Int. J. Heat Fluid Fl. 23 792

    [21]

    Li J, Mason D J 2000 Powder Technol. 112 273

    [22]

    Chang J, Gao J S, Xu C M 2007 Comput. Appl. Chem. 24 425 (in Chinese) [常剑, 高金森, 徐春明 2007 计算机与应用化学 24 425]

    [23]

    Chen F Z, Qiang H F, Gao W R 2014 Acta Phys. Sin. 63 130202 (in Chinese) [陈福振, 强洪夫, 高巍然 2014 63 130202]

    [24]

    Lun C K K, Savage S B, Jeffrey D J 1984 J. Fluid Mech. 140 223

    [25]

    Gunn D J 1978 Int. J. Heat Mass Trans. 21 467

    [26]

    Cleary P W, Monaghan J J 1999 J. Comput. Phys. 148 227

    [27]

    Morris J P, Fox P J, Zhu Y 1997 J. Comput. Phys. 136 214

    [28]

    Nieuwland J J, Veenendaal M L, Kuipers J A M, Vanswaaij W P M 1996 Chem. Eng. Sci. 51 4087

  • [1] 李冀, 陈亮, 冯芒. 基于离子阱中离子晶体的热传导的研究进展.  , 2024, 73(3): 033701. doi: 10.7498/aps.73.20231719
    [2] 贺华丹, 钟琦超, 解文军. 声悬浮条件下双水相液滴的蒸发与相分离.  , 2024, 73(3): 034304. doi: 10.7498/aps.73.20230963
    [3] 赵罡, 梁汉普, 段益峰. 二维X-AlN (X = C, Si, TC) 半导体的可见光调控与反常热输运.  , 2023, 72(9): 096301. doi: 10.7498/aps.72.20230116
    [4] 王浩, 徐进良. 油面上相邻Leidenfrost液滴的相互作用及运动机制.  , 2023, 72(5): 054401. doi: 10.7498/aps.72.20221822
    [5] 苏瑞霞, 黄霞, 郑志刚. 耦合Frenkel-Kontorova双链的格波解及其色散关系.  , 2022, 71(15): 154401. doi: 10.7498/aps.71.20212362
    [6] 曹义刚, 付萌萌, 杨喜昶, 李登峰, 王晓霞. 热传导对横截面不同的直管道中Kelvin-Helmholtz不稳定性的影响.  , 2022, 71(9): 094701. doi: 10.7498/aps.71.20211155
    [7] 秦成龙, 罗祥燕, 谢泉, 吴乔丹. 碳纳米管和碳化硅纳米管热导率的分子动力学研究.  , 2022, 71(3): 030202. doi: 10.7498/aps.71.20210969
    [8] 叶学民, 张湘珊, 李明兰, 李春曦. 液滴在不同润湿性表面上蒸发时的动力学特性.  , 2018, 67(11): 114702. doi: 10.7498/aps.67.20180159
    [9] 吴文智, 高来勖, 孔德贵, 高扬, 冉玲苓, 柴志军. 基于飞秒瞬态反射/透射技术的纳米Au半透膜热效应研究.  , 2016, 65(4): 046801. doi: 10.7498/aps.65.046801
    [10] 刘燕文, 王小霞, 陆玉新, 田宏, 朱虹, 孟鸣凤, 赵丽, 谷兵. 用于电真空器件的金属材料蒸发特性.  , 2016, 65(6): 068502. doi: 10.7498/aps.65.068502
    [11] 陈福振, 强洪夫, 苗刚, 高巍然. 燃料抛撒成雾及其燃烧爆炸的光滑离散颗粒流体动力学方法数值模拟研究.  , 2015, 64(11): 110202. doi: 10.7498/aps.64.110202
    [12] 敖宏瑞, 陈漪, 董明, 姜洪源. 基于多物理场的TFC磁头热传导机理及其影响因素仿真研究.  , 2014, 63(3): 034401. doi: 10.7498/aps.63.034401
    [13] 袁宗强, 褚敏, 郑志刚. Fermi-Pasta-Ulam β 格点链系统能量载流子研究.  , 2013, 62(8): 080504. doi: 10.7498/aps.62.080504
    [14] 马艳红, 仝小龙, 朱彬, 张大义, 洪杰. 金属橡胶热物理性能理论与试验研究.  , 2013, 62(4): 048101. doi: 10.7498/aps.62.048101
    [15] 张文彬, 廖龙光, 于同旭, 纪爱玲. 溶液液滴蒸发变干的环状沉积.  , 2013, 62(19): 196102. doi: 10.7498/aps.62.196102
    [16] 高秀云, 郑志刚. 一维均匀Morse晶格体系的热流棘齿效应.  , 2011, 60(4): 044401. doi: 10.7498/aps.60.044401
    [17] 张世来, 刘福生, 彭小娟, 张明建, 李永宏, 马小娟, 薛学东. 纳秒尺度金属熔化相变数值模拟及实验验证.  , 2011, 60(1): 014401. doi: 10.7498/aps.60.014401
    [18] 刘燕文, 田宏, 韩勇, 朱虹, 李玉涛, 徐振英, 孟鸣凤, 易红霞, 陆玉新, 张洪来, 刘濮鲲. 新型的覆纳米粒子薄膜阴极的研究.  , 2009, 58(12): 8635-8642. doi: 10.7498/aps.58.8635
    [19] 周桂耀, 侯峙云, 潘普丰, 侯蓝田, 李曙光, 韩 颖. 微结构光纤预制棒拉制过程的温度场分布.  , 2006, 55(3): 1271-1275. doi: 10.7498/aps.55.1271
    [20] 秦 颖, 王晓钢, 董 闯, 郝胜智, 刘 悦, 邹建新, 吴爱民, 关庆丰. 强流脉冲电子束诱发温度场及表面熔坑的形成.  , 2003, 52(12): 3043-3048. doi: 10.7498/aps.52.3043
计量
  • 文章访问数:  6530
  • PDF下载量:  506
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-14
  • 修回日期:  2014-06-09
  • 刊出日期:  2014-12-05

/

返回文章
返回
Baidu
map