搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锂离子进入碳纳米管端口速度的分子动力学模拟

杨成兵 解辉 刘朝

引用本文:
Citation:

锂离子进入碳纳米管端口速度的分子动力学模拟

杨成兵, 解辉, 刘朝

Molecular dynamics simulation of average velocity of lithium iron across the end of carbon nanotube

Yang Cheng-Bing, Xie Hui, Liu Chao
PDF
导出引用
  • 锂离子进入碳纳米管端口的速度VLi是影响锂离子电池充电性能的重要因素. 采用分子动力学模拟方法,研究了直径、温度、电场强度和端口改性官能团四种因子对其影响. 运用正交实验方法,分析得出了各因子及其不同水平的影响规律. 结果表明,四种因子的影响力度由大到小依次为:电场强度、官能团类型、碳纳米管直径和温度. 在本文的模拟条件下,随着电场强度和碳纳米管直径的增大,VLi逐渐增加,且在电场强度下的增幅会更显著;碳纳米管端口官能团分别改性为氢原子(–H),羟基(–OH),氨基(–NH2)以及羧基(–COOH)时,VLi会逐步降低;随着温度的增大,VLi先增加后减小,但整体波动偏幅不大.
    The velocity of lithium iron across the entrance of carbon nanotube VLi is an important factor for the charge performance of lithium iron battery. The molecular dynamics simulation is adopted to evaluate the effects of control factors which include electric strength, functional group type, the diameter of carbon nanotube and temperature. By the L16(45) orthogonal array method, the simulations are carried out. The order of influences of control factors is electric filed intensity > functional group > diameter > temperature. Within the ranges of the control factors studied in this work, VLi increases with increasing the diameter of carbon nanotube and electric field strength. VLi decreases with successively modifying the functional groups at the end of carbon nanotube into -H, -OH, -NH2 and -COOH. With the increasing of temperature, VLi first increases then decreases, but on the whole its change is not big.
    • 基金项目: 国家自然科学基金(批准号:51206195)、重庆市自然科学基金(批准号:cstc2013jcyjA90009)和中央高校基本科研业务费(批准号:CDJZR12110033)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51206195), the Natural Science Foundation of Chongqing, China (Grant No. cstc2013jcyjA90009), and the Fundamental Research Fund for the Central Universities, China (Grant No. CDJZR12110033).
    [1]

    Scrosati B, Garche J 2010 Power Sources 195 2419

    [2]

    Liang C, Gao M X, Pan H G, Liu Y F, Yan M 2013 Alloy. Compd. 575 246

    [3]

    Landi B J, Ganter M J, Cress C D, DiLeo R A, Raffaelle R P 2009 Energy Environ. Sci. 2 638

    [4]

    Endo M, Kim C, Nishimura K, Fujino T, Miyashita K 2000 Carbon 38 183

    [5]

    Stura E, Nicolini C 2006 Anal. Chim. Acta 568 57

    [6]

    Suo L, Hu Y, Li H, Armand M, Chen L 2013 Nat. Commun. 4 1481

    [7]

    Su J, Guo H 2011 Chem. Phys. 134 244513

    [8]

    Miao T T, Song M X, Ma W G, Zhang X 2011 Chin. Phys. B 20 56501

    [9]

    Wang G T 2011 Chin. Phys. B 20 67305

    [10]

    Niu Z Q, Ma W J, Dong H B, Li J Z, Zhou W Y 2011 Chin. Phys. B 20 28101

    [11]

    De Las Casas C, Li W 2012 Power Sources 208 74

    [12]

    Xiong Z, Yun Y S, Jin H 2013 Materials 6 1138

    [13]

    Zhao J, Buldum A, Han J, Lu J P 2000 Phys. Rev. Lett. 85 1706

    [14]

    Senami M, Ikeda Y, Fukushima A, Tachibana A 2011 AIP Advances 1 42106

    [15]

    Kawasaki S, Hara T, Iwai Y, Suzuki Y 2008 Mater. Lett. 62 2917

    [16]

    Udomvech A, Kerdcharoen T 2008 J. Korean Phys. Soc. 52 1350

    [17]

    Nishidate K, Hasegawa M 2005 Phys. Rev. B 71 245418

    [18]

    Yang Z, Wu H 2001 Solid State Ionics 143 173

    [19]

    Yang S, Huo J, Song H, Chen X 2008 Electrochim. Acta 53 2238

    [20]

    Zhang Y P, Chen T Q, Wang J H, Min G Q, Pan L K, Song Z T, Sun Z, Zhou W M, Zhang J 2012 Appl. Surf. Sci. 258 4729

    [21]

    Wongchoosuk C, Udomvech A, Kerdcharoen T 2009 Current Appl. Phys. 9 352

    [22]

    He Z J, Zhou J 2011 Acta Chim. Sin. 69 2901 (in Chinese) [贺仲金, 周健 2011 化学学报 69 2901]

    [23]

    Xu K, Wang Q S, Tan B, Chen M X, Miao L, Jiang J J 2012 Acta Phys. Sin. 61 096101 (in Chinese) [徐葵, 王青松, 谭兵, 陈明璇, 缪灵, 江建军 2012 61 096101]

    [24]

    Ju Y Y, Zhang Q M, Gong Z Z, Ji G F 2013 Chin. Phys. B 22 83101

    [25]

    Wang Y, Zhao Y J, Huang J P 2012 Chin. Phys. B 21 76102

    [26]

    Xie H, Liu C 2012 AIP Advances 2 42126

    [27]

    Xu C, He Y L, Wang Y 2005 J. Engineer. Thermophys. 26 912 (in Chinese) [徐超, 何雅玲, 王勇 2005 工程热 26 912]

    [28]

    Wang J M, Hu J P, Liu C H, Shi S Q, Ouyang C Y 2012 Physics 41 95 (in Chinese) [王佳民, 胡军平, 刘春华, 施思齐, 欧阳楚英 2012 物理 41 95]

    [29]

    Lyu S, Wu W T, Hou C C, Hsieh W 2010 Cryobiology 60 165

    [30]

    Thakkar D, Gevriya B, Mashru R C 2013 Spectrochim. Acta A 122 75

    [31]

    Jia Y, Li Y, Hu Y 2011 Acta Phys. Chim. Sin. 27 228

    [32]

    Cao B Y, Chen M, Guo Z Y 2006 Acta Phys. Sin. 55 5305 (in Chinese) [曹炳阳, 陈民, 过增元 2006 55 5305]

    [33]

    Hanasaki I, Nakatani A 2006 J. Chem. Phys. 124 174714

    [34]

    Walther J H, Ritos K, Cruz-Chu E R, Megaridis C M, Koumoutsakos P 2013 Nano Lett. 13 1910

    [35]

    Krishnan T V, Babu J S, Sathian S P 2013 Mol. Liq. 188 42

    [36]

    Zhang C B, Zhao M W, Chen Y P, Shi M H 2012 CIESC J. 63 12 (in Chinese) [张程宾, 赵沐雯, 陈永平, 施明恒 2012 化工学报 63 12]

    [37]

    Li H M, Yang D F, Liu Q Z, Hu Y D 2013 Chem. J. Chin. Univ. 34 925 (in Chinese) [李红曼, 杨登峰, 刘清芝, 胡仰栋 2013 高等学校化学学报 34 925]

    [38]

    Corry B 2011 Energy Environ. Sci. 4 751

  • [1]

    Scrosati B, Garche J 2010 Power Sources 195 2419

    [2]

    Liang C, Gao M X, Pan H G, Liu Y F, Yan M 2013 Alloy. Compd. 575 246

    [3]

    Landi B J, Ganter M J, Cress C D, DiLeo R A, Raffaelle R P 2009 Energy Environ. Sci. 2 638

    [4]

    Endo M, Kim C, Nishimura K, Fujino T, Miyashita K 2000 Carbon 38 183

    [5]

    Stura E, Nicolini C 2006 Anal. Chim. Acta 568 57

    [6]

    Suo L, Hu Y, Li H, Armand M, Chen L 2013 Nat. Commun. 4 1481

    [7]

    Su J, Guo H 2011 Chem. Phys. 134 244513

    [8]

    Miao T T, Song M X, Ma W G, Zhang X 2011 Chin. Phys. B 20 56501

    [9]

    Wang G T 2011 Chin. Phys. B 20 67305

    [10]

    Niu Z Q, Ma W J, Dong H B, Li J Z, Zhou W Y 2011 Chin. Phys. B 20 28101

    [11]

    De Las Casas C, Li W 2012 Power Sources 208 74

    [12]

    Xiong Z, Yun Y S, Jin H 2013 Materials 6 1138

    [13]

    Zhao J, Buldum A, Han J, Lu J P 2000 Phys. Rev. Lett. 85 1706

    [14]

    Senami M, Ikeda Y, Fukushima A, Tachibana A 2011 AIP Advances 1 42106

    [15]

    Kawasaki S, Hara T, Iwai Y, Suzuki Y 2008 Mater. Lett. 62 2917

    [16]

    Udomvech A, Kerdcharoen T 2008 J. Korean Phys. Soc. 52 1350

    [17]

    Nishidate K, Hasegawa M 2005 Phys. Rev. B 71 245418

    [18]

    Yang Z, Wu H 2001 Solid State Ionics 143 173

    [19]

    Yang S, Huo J, Song H, Chen X 2008 Electrochim. Acta 53 2238

    [20]

    Zhang Y P, Chen T Q, Wang J H, Min G Q, Pan L K, Song Z T, Sun Z, Zhou W M, Zhang J 2012 Appl. Surf. Sci. 258 4729

    [21]

    Wongchoosuk C, Udomvech A, Kerdcharoen T 2009 Current Appl. Phys. 9 352

    [22]

    He Z J, Zhou J 2011 Acta Chim. Sin. 69 2901 (in Chinese) [贺仲金, 周健 2011 化学学报 69 2901]

    [23]

    Xu K, Wang Q S, Tan B, Chen M X, Miao L, Jiang J J 2012 Acta Phys. Sin. 61 096101 (in Chinese) [徐葵, 王青松, 谭兵, 陈明璇, 缪灵, 江建军 2012 61 096101]

    [24]

    Ju Y Y, Zhang Q M, Gong Z Z, Ji G F 2013 Chin. Phys. B 22 83101

    [25]

    Wang Y, Zhao Y J, Huang J P 2012 Chin. Phys. B 21 76102

    [26]

    Xie H, Liu C 2012 AIP Advances 2 42126

    [27]

    Xu C, He Y L, Wang Y 2005 J. Engineer. Thermophys. 26 912 (in Chinese) [徐超, 何雅玲, 王勇 2005 工程热 26 912]

    [28]

    Wang J M, Hu J P, Liu C H, Shi S Q, Ouyang C Y 2012 Physics 41 95 (in Chinese) [王佳民, 胡军平, 刘春华, 施思齐, 欧阳楚英 2012 物理 41 95]

    [29]

    Lyu S, Wu W T, Hou C C, Hsieh W 2010 Cryobiology 60 165

    [30]

    Thakkar D, Gevriya B, Mashru R C 2013 Spectrochim. Acta A 122 75

    [31]

    Jia Y, Li Y, Hu Y 2011 Acta Phys. Chim. Sin. 27 228

    [32]

    Cao B Y, Chen M, Guo Z Y 2006 Acta Phys. Sin. 55 5305 (in Chinese) [曹炳阳, 陈民, 过增元 2006 55 5305]

    [33]

    Hanasaki I, Nakatani A 2006 J. Chem. Phys. 124 174714

    [34]

    Walther J H, Ritos K, Cruz-Chu E R, Megaridis C M, Koumoutsakos P 2013 Nano Lett. 13 1910

    [35]

    Krishnan T V, Babu J S, Sathian S P 2013 Mol. Liq. 188 42

    [36]

    Zhang C B, Zhao M W, Chen Y P, Shi M H 2012 CIESC J. 63 12 (in Chinese) [张程宾, 赵沐雯, 陈永平, 施明恒 2012 化工学报 63 12]

    [37]

    Li H M, Yang D F, Liu Q Z, Hu Y D 2013 Chem. J. Chin. Univ. 34 925 (in Chinese) [李红曼, 杨登峰, 刘清芝, 胡仰栋 2013 高等学校化学学报 34 925]

    [38]

    Corry B 2011 Energy Environ. Sci. 4 751

  • [1] 邢赫威, 陈占秀, 杨历, 苏瑶, 李源华, 呼和仓. 不凝性气体对纳米通道内水分子流动传热影响的分子动力学模拟.  , 2024, 73(9): 094701. doi: 10.7498/aps.73.20240192
    [2] 刘子怡, 褚福强, 魏俊俊, 冯妍卉. 金刚石/碳纳米管异质界面热导及声子热输运特性.  , 2024, 73(13): 138102. doi: 10.7498/aps.73.20240323
    [3] 秦成龙, 罗祥燕, 谢泉, 吴乔丹. 碳纳米管和碳化硅纳米管热导率的分子动力学研究.  , 2022, 71(3): 030202. doi: 10.7498/aps.71.20210969
    [4] 杨权, 马立, 耿松超, 林旖旎, 陈涛, 孙立宁. 多壁碳纳米管与金属表面间接触行为的分子动力学模拟.  , 2021, 70(10): 106101. doi: 10.7498/aps.70.20202194
    [5] 潘登, 刘长鑫, 张泽洋, 高玉金, 郝秀红. 速度对聚四氟乙烯摩擦系数影响的分子动力学模拟.  , 2019, 68(17): 176801. doi: 10.7498/aps.68.20190495
    [6] 李锐, 刘腾, 陈翔, 陈思聪, 符义红, 刘琳. 界面结构对Cu/Ni多层膜纳米压痕特性影响的分子动力学模拟.  , 2018, 67(19): 190202. doi: 10.7498/aps.67.20180958
    [7] 李瑞, 密俊霞. 界面接枝羟基对碳纳米管运动和摩擦行为影响的分子动力学模拟.  , 2017, 66(4): 046101. doi: 10.7498/aps.66.046101
    [8] 李阳, 宋永顺, 黎明, 周昕. 碳纳米管中水孤立子扩散现象的模拟研究.  , 2016, 65(14): 140202. doi: 10.7498/aps.65.140202
    [9] 曾永辉, 江五贵, Qin Qing-Hua. 螺旋上升对自激发锯齿型双壁碳纳米管振荡行为的影响.  , 2016, 65(14): 148802. doi: 10.7498/aps.65.148802
    [10] 韩典荣, 王璐, 罗成林, 朱兴凤, 戴亚飞. (n, n)-(2n, 0)碳纳米管异质结的扭转力学特性.  , 2015, 64(10): 106102. doi: 10.7498/aps.64.106102
    [11] 曹平, 罗成林, 陈贵虎, 韩典荣, 朱兴凤, 戴亚飞. 通量可控的双壁碳纳米管水分子泵.  , 2015, 64(11): 116101. doi: 10.7498/aps.64.116101
    [12] 焦学敬, 欧阳方平, 彭盛霖, 李建平, 段吉安, 胡友旺. 碳纳米管对接成异质结器件的计算模拟.  , 2013, 62(10): 106101. doi: 10.7498/aps.62.106101
    [13] 张忠强, 丁建宁, 刘珍, Y. Xue, 程广贵, 凌智勇. 碳纳米管-聚乙烯复合材料界面力学特性分析.  , 2012, 61(12): 126202. doi: 10.7498/aps.61.126202
    [14] 孟利军, 肖化平, 唐超, 张凯旺, 钟建新. 碳纳米管-硅纳米线复合结构的形成和热稳定性.  , 2009, 58(11): 7781-7786. doi: 10.7498/aps.58.7781
    [15] 张忠强, 张洪武, 王 磊, 郑勇刚, 王晋宝. 液体水银在碳纳米管中传输的压力控制模型.  , 2008, 57(2): 1019-1024. doi: 10.7498/aps.57.1019
    [16] 辛 浩, 韩 强, 姚小虎. 单、双原子空位缺陷对扶手椅型单层碳纳米管屈曲性能的不同影响.  , 2008, 57(7): 4391-4396. doi: 10.7498/aps.57.4391
    [17] 孟利军, 张凯旺, 钟建新. 硅纳米颗粒在碳纳米管表面生长的分子动力学模拟.  , 2007, 56(2): 1009-1013. doi: 10.7498/aps.56.1009
    [18] 张助华, 郭万林, 郭宇锋. 轴向磁场对碳纳米管电子性质的影响.  , 2006, 55(12): 6526-6531. doi: 10.7498/aps.55.6526
    [19] 保文星, 朱长纯. 碳纳米管热传导的分子动力学模拟研究.  , 2006, 55(7): 3552-3557. doi: 10.7498/aps.55.3552
    [20] 保文星, 朱长纯, 崔万照. 基于克隆选择的混合遗传算法在碳纳米管结构优化中的研究.  , 2005, 54(11): 5281-5287. doi: 10.7498/aps.54.5281
计量
  • 文章访问数:  6962
  • PDF下载量:  1363
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-12
  • 修回日期:  2014-06-11
  • 刊出日期:  2014-10-05

/

返回文章
返回
Baidu
map