搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双空位掺杂氟化石墨烯的电子性质和磁性

徐雷 戴振宏 隋鹏飞 王伟田 孙玉明

引用本文:
Citation:

双空位掺杂氟化石墨烯的电子性质和磁性

徐雷, 戴振宏, 隋鹏飞, 王伟田, 孙玉明

Electronic and magnetic properties of fluorinated graphene sheets with divacancy substitutional doping

Xu Lei, Dai Zhen-Hong, Sui Peng-Fei, Wang Wei-Tian, Sun Yu-Ming
PDF
导出引用
  • 基于密度泛函理论,计算了外来原子X(Al,P,Ga,As,Si)双空位替代掺杂氟化石墨烯的电子特性和磁性. 通过对计算结果分析发现,与石墨烯的双空位掺杂类似,氟化石墨烯的双空位掺杂也是一种较为理想的掺杂方式. 通过不同原子掺杂,氟化石墨烯的电子性质与磁性均发生很大变化:Al和Ga掺杂使氟化石墨烯由半导体变为金属,并且具有磁性;P和As掺杂使氟化石墨烯变为自旋半导体;Si掺杂氟化石墨烯仍是半导体,只改变带隙且没有磁性. 进一步讨论磁性产生机制获得了掺杂原子浓度与磁性的关系,并且发现不同掺杂情况的磁性是由不同原子的不同轨道电子引起的. 双空位掺杂不仅丰富了氟化石墨烯的掺杂方式,其不同电磁特性也使此类掺杂结构在未来的电子器件中具有潜在应用.
    According to the first principles, we investigate the structure, electronic, and magnetic properties of fluorinated graphene doped with external X (Al, P, Ga, As, Si) atoms at double vacancies, and find that like double vacancy doping of graphene, this kind of the fluorinated graphene divacancy substitution is also an ideal choice for substitutional doping. The results show that the electronic property and magnetic property of the fluorinated graphene both have large changes: the fluorinated graphene doped with Al (Ga) atoms can cause the semiconductor-to-metal transitions and induce magnetic moments. The fluorinated graphene doped with P (As) atoms becomes spin-polarized semiconductor. The Si doped fluorinated graphene keeps the semiconductor properties unchanged and has no magnetic moments. Through the further discussion about the mechanism of magnetism the relation between the doping concentration and magnetic property is obtained, and the magnetic properties in different doping situations are found to be caused by the different orbital electrons of different atoms. The divacancy substitutional doping behaviors enrich not only the doping ways of fluorinated graphene materials, but also its distinctive electronic and magnetic characteristics, which make this doping structure have potential applications in future electronic devices.
    • 基金项目: 教育部新世纪优秀人才支持计划(批准号:NCET-09-0867)资助的课题.
    • Funds: Project supported by the Program for the New Century Excellent Talents in University of Ministry of Education, China (Grant No. NCET-09-0867).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Kim J, Park H, Hannon J B, Bedell S W, Fogel K, Sadana D K, Dimitrakopoulos C 2013 Science 342 833

    [3]

    Liu Y, Yao J, Chen C, Miao L, Jiang J J 2013 Acta Phys. Sin. 62 063601(in Chinese)[刘源, 姚洁, 陈驰, 缪灵, 江建军 2013 62 063601]

    [4]

    Tang J, Liu A P, Li P G, Shen J Q, Tang W H 2014 Acta Phys. Sin. 63 107801(in Chinese)[汤建, 刘爱萍, 李培刚, 沈静琴, 唐为华 2014 63 107801]

    [5]

    Elias D C, Nair R R, Mohiuddin T M G, Morozov S V, Blake P, Halsall M P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K, Novoselov K S 2009 Science 323 610

    [6]

    Nair R R, Ren W, Jalil R, Riaz I, Kravets V G, Britnell L, Blake P, Schedin F, Mayorov A S, Yuan S, Katsnelson M I, Cheng H M, Strupinski W, Bulusheva L G, Okotrub A V, Grigorieva I V, Grigorenko A N, Novoselov K S, Geim A K 2010 Small 6 2877

    [7]

    Boukhvalov D W 2010 Physica E 43 199

    [8]

    Sahin H, Topsakal M, Ciraci S 2011 Phys. Rev. B 83 115432

    [9]

    Robinson J T, Burgess J S, Junkermeier C E, Badescu S C, Reinecke T L, Perkins F K, Zalalutdniov M K, Baldwin J W, Culbertson J C, Sheehan P E, Snow E S 2010 Nano Lett. 10 3001

    [10]

    Xu X G, Zhang D L, Wu Y, Zhang X, Li X Q, Yang H L, Jiang Y 2012 Rare Metals 31 107

    [11]

    Chen L L, Guo L W, Liu Y, Li Z L, Huang J, Lu W 2013 Chin. Phys. B 22 107901

    [12]

    Mei F, Zhang D W, Zhu S L 2013 Chin. Phys. B 22 116106

    [13]

    Xu L, Dai Z H, Wang S, Liu B, Sun Y M, Wang W T 2014 Acta Phys. Sin. 63 107102(in Chinese)[徐雷, 戴振宏, 王森, 刘兵, 孙玉明, 王伟田 2014 63 107102]

    [14]

    Bangert U, Bleloch A, Gass M H, Seepujak A, van den Berg J 2010 Phys. Rev. B 81 245423

    [15]

    Wang X, Li X, Zhang L, Yoon Y, Weber P K, Wang H, Guo J, Dai H 2009 Science 324 768

    [16]

    Ao Z M, Yang J, Li S, Jiang Q 2008 Chem. Phys. Lett. 461 276

    [17]

    Dai J, Yuan J 2010 Phys. Rev. B 81 165414

    [18]

    Denis P A 2010 Chem. Phys. Lett. 492 251

    [19]

    Gao T H 2014 Acta Phys. Sin. 63 046102(in Chinese)[高潭华 2014 63 046102]

    [20]

    Tsetseris L, Wang B, Pantelides S T 2014 Phys. Rev. B 89 035411

    [21]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251

    [22]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [23]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [24]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [25]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Kim J, Park H, Hannon J B, Bedell S W, Fogel K, Sadana D K, Dimitrakopoulos C 2013 Science 342 833

    [3]

    Liu Y, Yao J, Chen C, Miao L, Jiang J J 2013 Acta Phys. Sin. 62 063601(in Chinese)[刘源, 姚洁, 陈驰, 缪灵, 江建军 2013 62 063601]

    [4]

    Tang J, Liu A P, Li P G, Shen J Q, Tang W H 2014 Acta Phys. Sin. 63 107801(in Chinese)[汤建, 刘爱萍, 李培刚, 沈静琴, 唐为华 2014 63 107801]

    [5]

    Elias D C, Nair R R, Mohiuddin T M G, Morozov S V, Blake P, Halsall M P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K, Novoselov K S 2009 Science 323 610

    [6]

    Nair R R, Ren W, Jalil R, Riaz I, Kravets V G, Britnell L, Blake P, Schedin F, Mayorov A S, Yuan S, Katsnelson M I, Cheng H M, Strupinski W, Bulusheva L G, Okotrub A V, Grigorieva I V, Grigorenko A N, Novoselov K S, Geim A K 2010 Small 6 2877

    [7]

    Boukhvalov D W 2010 Physica E 43 199

    [8]

    Sahin H, Topsakal M, Ciraci S 2011 Phys. Rev. B 83 115432

    [9]

    Robinson J T, Burgess J S, Junkermeier C E, Badescu S C, Reinecke T L, Perkins F K, Zalalutdniov M K, Baldwin J W, Culbertson J C, Sheehan P E, Snow E S 2010 Nano Lett. 10 3001

    [10]

    Xu X G, Zhang D L, Wu Y, Zhang X, Li X Q, Yang H L, Jiang Y 2012 Rare Metals 31 107

    [11]

    Chen L L, Guo L W, Liu Y, Li Z L, Huang J, Lu W 2013 Chin. Phys. B 22 107901

    [12]

    Mei F, Zhang D W, Zhu S L 2013 Chin. Phys. B 22 116106

    [13]

    Xu L, Dai Z H, Wang S, Liu B, Sun Y M, Wang W T 2014 Acta Phys. Sin. 63 107102(in Chinese)[徐雷, 戴振宏, 王森, 刘兵, 孙玉明, 王伟田 2014 63 107102]

    [14]

    Bangert U, Bleloch A, Gass M H, Seepujak A, van den Berg J 2010 Phys. Rev. B 81 245423

    [15]

    Wang X, Li X, Zhang L, Yoon Y, Weber P K, Wang H, Guo J, Dai H 2009 Science 324 768

    [16]

    Ao Z M, Yang J, Li S, Jiang Q 2008 Chem. Phys. Lett. 461 276

    [17]

    Dai J, Yuan J 2010 Phys. Rev. B 81 165414

    [18]

    Denis P A 2010 Chem. Phys. Lett. 492 251

    [19]

    Gao T H 2014 Acta Phys. Sin. 63 046102(in Chinese)[高潭华 2014 63 046102]

    [20]

    Tsetseris L, Wang B, Pantelides S T 2014 Phys. Rev. B 89 035411

    [21]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251

    [22]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [23]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [24]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [25]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

  • [1] 雷雪玲, 朱巨湧, 柯强, 欧阳楚英. 第一性原理研究硼掺杂氧化石墨烯对过氧化锂氧化反应的催化机理.  , 2024, 73(9): 098804. doi: 10.7498/aps.73.20240197
    [2] 杨海林, 陈琦丽, 顾星, 林宁. 氧原子在氟化石墨烯上扩散的第一性原理计算.  , 2023, 72(1): 016801. doi: 10.7498/aps.72.20221630
    [3] 侯滨朋, 淦作亮, 雷雪玲, 钟淑英, 徐波, 欧阳楚英. 第一性原理对氮掺杂石墨烯作为锂-空电池阴极材料还原氧分子的机理研究.  , 2019, 68(12): 128801. doi: 10.7498/aps.68.20190181
    [4] 张梅玲, 陈玉红, 张材荣, 李公平. 内在缺陷与Cu掺杂共存对ZnO电磁光学性质影响的第一性原理研究.  , 2019, 68(8): 087101. doi: 10.7498/aps.68.20182238
    [5] 陈国祥, 樊晓波, 李思琦, 张建民. 碱金属和碱土金属掺杂二维GaN材料电磁特性的第一性原理计算.  , 2019, 68(23): 237303. doi: 10.7498/aps.68.20191246
    [6] 贾婉丽, 周淼, 王馨梅, 纪卫莉. Fe掺杂GaN光电特性的第一性原理研究.  , 2018, 67(10): 107102. doi: 10.7498/aps.67.20172290
    [7] 杨光敏, 梁志聪, 黄海华. 石墨烯吸附Li团簇的第一性原理计算.  , 2017, 66(5): 057301. doi: 10.7498/aps.66.057301
    [8] 陈庆玲, 戴振宏, 刘兆庆, 安玉凤, 刘悦林. 双层h-BN/Graphene结构稳定性及其掺杂特性的第一性原理研究.  , 2016, 65(13): 136101. doi: 10.7498/aps.65.136101
    [9] 路战胜, 李燕, 程莹洁, 李硕, 张喜林, 徐国亮, 杨宗献. 第一性原理研究O2在TiN4掺杂石墨烯上的氢化.  , 2015, 64(21): 216101. doi: 10.7498/aps.64.216101
    [10] 高潭华. 外来原子替代碳的氟化石墨烯的磁性和电子性质.  , 2014, 63(4): 046102. doi: 10.7498/aps.63.046102
    [11] 刘源, 姚洁, 陈驰, 缪灵, 江建军. 氢修饰石墨烯纳米带压电性质的第一性原理研究.  , 2013, 62(6): 063601. doi: 10.7498/aps.62.063601
    [12] 令狐佳珺, 梁工英. In掺杂ZnTe发光性能的第一性原理计算.  , 2013, 62(10): 103102. doi: 10.7498/aps.62.103102
    [13] 林竹, 郭志友, 毕艳军, 董玉成. Cu掺杂的AlN铁磁性和光学性质的第一性原理研究.  , 2009, 58(3): 1917-1923. doi: 10.7498/aps.58.1917
    [14] 杨敏, 王六定, 陈国栋, 安博, 王益军, 刘光清. 碳掺杂闭口硼氮纳米管场发射第一性原理研究.  , 2009, 58(10): 7151-7155. doi: 10.7498/aps.58.7151
    [15] 黄云霞, 曹全喜, 李智敏, 李桂芳, 王毓鹏, 卫云鸽. Al掺杂ZnO粉体的第一性原理计算及微波介电性质.  , 2009, 58(11): 8002-8007. doi: 10.7498/aps.58.8002
    [16] 张计划, 丁建文, 卢章辉. Co掺杂MgF2电子结构和光学特性的第一性原理研究.  , 2009, 58(3): 1901-1907. doi: 10.7498/aps.58.1901
    [17] 陈 琨, 范广涵, 章 勇, 丁少锋. In-N共掺杂ZnO第一性原理计算.  , 2008, 57(5): 3138-3147. doi: 10.7498/aps.57.3138
    [18] 陈 琨, 范广涵, 章 勇. Mn掺杂ZnO光学特性的第一性原理计算.  , 2008, 57(2): 1054-1060. doi: 10.7498/aps.57.1054
    [19] 彭丽萍, 徐 凌, 尹建武. N掺杂锐钛矿TiO2光学性能的第一性原理研究.  , 2007, 56(3): 1585-1589. doi: 10.7498/aps.56.1585
    [20] 丁少锋, 范广涵, 李述体, 肖 冰. 氮化铟p型掺杂的第一性原理研究.  , 2007, 56(7): 4062-4067. doi: 10.7498/aps.56.4062
计量
  • 文章访问数:  6521
  • PDF下载量:  592
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-11
  • 修回日期:  2014-05-14
  • 刊出日期:  2014-09-05

/

返回文章
返回
Baidu
map