搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

颗粒滚动摩擦系数对堆积特性的影响

韩燕龙 贾富国 唐玉荣 刘扬 张强

引用本文:
Citation:

颗粒滚动摩擦系数对堆积特性的影响

韩燕龙, 贾富国, 唐玉荣, 刘扬, 张强

Influence of granular coefficient of rolling friction on accumulation characteristics

Han Yan-Long, Jia Fu-Guo, Tang Yu-Rong, Liu Yang, Zhang Qiang
PDF
导出引用
  • 为探讨颗粒摩擦系数对堆积特性的影响,利用离散单元法,模拟静摩擦系数固定时,变化滚动摩擦系数对椭球形颗粒堆积角及堆积体的影响. 利用自制斜面仪测定了颗粒静摩擦系数,并对滚动摩擦系数与堆积角建立线性方程. 结果表明,滚动摩擦系数对颗粒堆积特性有显著影响,颗粒堆积角随滚动摩擦系数增大而增大,边界圆与连续圆间的间隙随滚动摩擦系数增大而减小. 依据颗粒堆积过程中旋转动能的变化可以阐述上述结果,建立的滚动摩擦系数与堆积角的线性方程可为具体颗粒物料滚动摩擦系数的获取提供数值测量思路. 模拟堆积的过程可为散体物料一些不易测量的参数进行虚拟实验标定.
    The influence of friction coefficient, in terms of fixed static friction coefficient (sfc) and different rolling friction coefficients (rfc), on the accumulation characteristics of particle, including the angle of repose and accumulation body, is simulated using the discrete element method. The sfc of a particle is measured with a home-made cant instrument, and a linear equation is developed to describe the relationship between the rfc and the angle of repose. Results show that rfc has obviously an influence on the accumulation characteristics of particles: the angle of repose of particles increases as rfc increases, the gap between the boundary circle and the continuous circle decreases with increasing rfc. Based on the change of rotational kinetic energy in the process of accumulation of particles, the above results can be explained. And the linear equation can provide ideas for numerical measure of granular rfc. For some difficultly measured parameters of bulk materials, the simulation of accumulation process is a valid virtual calibration test.
    • 基金项目: 国家十二五科技支撑计划项目 (批准号:2012BAD34B0205-2)、黑龙江省自然科学基金(批准号:E201322)和哈尔滨市优秀学科带头人基金(RC2013XK006004)资助的课题.
    • Funds: Project supported by the State Science and Technology Support Plan during the 12th Five-Year Plan Period of China (Grant No.2012BAD34B0205-2), the Natural Science Foundation of Heilongjiang Province, China (Grant No.E201322), and the Harbin Foundation for Outstanding Academic Leaders, China (Grant No.RC2013XK006004).
    [1]

    Zhao Y Z, Jiang M Q, Xu P, Zheng J Y 2009 Acta Phys. Sin. 58 1819 (in Chinese)[赵永志, 江茂强, 徐平, 郑津洋 2009 58 1819]

    [2]

    Zhao Y Z, Jiang M Q, Zheng J Y 2009 Acta Phys. Sin. 58 1812 (in Chinese)[赵永志, 江茂强, 郑津洋 2009 58 1812]

    [3]
    [4]
    [5]

    Gao H L, Chen Y C, Zhao Y Z, Zheng J Y 2011 Acta Phys. Sin. 60 124501 (in Chinese)[高红利, 陈友川, 赵永志, 郑津洋 2011 60 124501]

    [6]

    Zhao Y Z, Zhang X Q, Liu Y L, Zheng J Y 2009 Acta Phys. Sin. 58 8386 (in Chinese)[赵永志, 张宪旗, 刘延雷, 郑津洋 2009 58 8386]

    [7]
    [8]

    Zhao L L, Zhao Y M, Liu C S, Liu J 2014 Acta Phys. Sin. 63 034503 (in Chinese)[赵啦啦, 赵跃民, 刘初升, 李珺 2014 63 034503]

    [9]
    [10]
    [11]

    Abdul Q, Madad A S, Saeed A K 2013 Chin. Phys. B 22 058301

    [12]

    Abdul Q, Shi Q F, Liang X W, Sun G 2010 Chin. Phys. B 19 034601

    [13]
    [14]

    Xin N 2013 M. E. Dissertation (Jilin: Jilin University) (in Chinese)[心男 2013 硕士学位论文(吉林: 吉林大学)]

    [15]
    [16]
    [17]

    Lv H 2008 M. E. Dissertation (Jilin: Jilin University) (in Chinese)[吕昊 2008 硕士学位论文(吉林: 吉林大学)]

    [18]

    Xiao M H 2013 M. E. Dissertation (Zhejiang: Zhejiang Sci-Tech University) (in Chinese)[肖梦华 2013 硕士学位论文(浙江: 浙江理工大学)]

    [19]
    [20]

    Lidekerke P V, Tijskens E, Dintwa E, Rioual F, Vangeyte J, Ramon H 2009 Powder Technol. 190 348

    [21]
    [22]

    Li Y Y, Xia W, Zhou Z Y, He K J, Zhong W Z, Wu Y B 2010 Chin. Phys. B 19 024601

    [23]
    [24]
    [25]

    Nakashima H, Shioji Y, Kobayashi T, Aoki S, Shimizu H, Miyasaka J, Ohdoi K 2011 J. Terramechanics 48 17

    [26]
    [27]

    Goniva C, Kloss C, Deen N G, Kuipers J A M, Pirker S 2012 Particuology 10 582

    [28]
    [29]

    Ai J, Chen J F, Rotter J M, Ooi J Y 2011 Powder Technol. 206 269

    [30]
    [31]

    Zhou Y C, Wright B D, Yang R Y, Xu B H, Yu A B 1999 Physica A 269 536

    [32]
    [33]

    Zhou Y C, Xu B H, Yu A B, Zulli P 2002 Powder Technol. 125 45

    [34]
    [35]

    Persson A S, Alderborn G, Frenning G 2011 Eur. J. Pharm. Sci. 42 199

    [36]
    [37]

    Temizer I 2013 Tribol. Int. 67 229

    [38]
    [39]

    Wensrich C M, Katterfeld A 2012 Powder Technol. 217 409

    [40]

    Wiacek J, Molenda M, Horabik J, Ooi J Y 2012 Powder Technol. 217 435

    [41]
    [42]
    [43]

    Cleary P W 2013 Powder Technol. 248 103

    [44]

    Combarros M, Feise H J, Zetzener H, Kwade A Particuology (in press)

    [45]
    [46]

    Zhong W Z, He K J, Zhou Z Y, Xia W, Li Y Y 2009 Acta Phys. Sin. 58 5155 (in Chinese)[钟文镇, 何克晶, 周照耀, 夏伟, 李元元 2009 58 5155]

    [47]
    [48]

    Xie X M, Jiang Y M, Wang H Y, Cao X P, Liu Y 2003 Acta Phys. Sin. 52 2194 (in Chinese)[谢晓明, 蒋亦民, 王焕友, 曹晓平, 刘佑 2003 52 2194]

    [49]
  • [1]

    Zhao Y Z, Jiang M Q, Xu P, Zheng J Y 2009 Acta Phys. Sin. 58 1819 (in Chinese)[赵永志, 江茂强, 徐平, 郑津洋 2009 58 1819]

    [2]

    Zhao Y Z, Jiang M Q, Zheng J Y 2009 Acta Phys. Sin. 58 1812 (in Chinese)[赵永志, 江茂强, 郑津洋 2009 58 1812]

    [3]
    [4]
    [5]

    Gao H L, Chen Y C, Zhao Y Z, Zheng J Y 2011 Acta Phys. Sin. 60 124501 (in Chinese)[高红利, 陈友川, 赵永志, 郑津洋 2011 60 124501]

    [6]

    Zhao Y Z, Zhang X Q, Liu Y L, Zheng J Y 2009 Acta Phys. Sin. 58 8386 (in Chinese)[赵永志, 张宪旗, 刘延雷, 郑津洋 2009 58 8386]

    [7]
    [8]

    Zhao L L, Zhao Y M, Liu C S, Liu J 2014 Acta Phys. Sin. 63 034503 (in Chinese)[赵啦啦, 赵跃民, 刘初升, 李珺 2014 63 034503]

    [9]
    [10]
    [11]

    Abdul Q, Madad A S, Saeed A K 2013 Chin. Phys. B 22 058301

    [12]

    Abdul Q, Shi Q F, Liang X W, Sun G 2010 Chin. Phys. B 19 034601

    [13]
    [14]

    Xin N 2013 M. E. Dissertation (Jilin: Jilin University) (in Chinese)[心男 2013 硕士学位论文(吉林: 吉林大学)]

    [15]
    [16]
    [17]

    Lv H 2008 M. E. Dissertation (Jilin: Jilin University) (in Chinese)[吕昊 2008 硕士学位论文(吉林: 吉林大学)]

    [18]

    Xiao M H 2013 M. E. Dissertation (Zhejiang: Zhejiang Sci-Tech University) (in Chinese)[肖梦华 2013 硕士学位论文(浙江: 浙江理工大学)]

    [19]
    [20]

    Lidekerke P V, Tijskens E, Dintwa E, Rioual F, Vangeyte J, Ramon H 2009 Powder Technol. 190 348

    [21]
    [22]

    Li Y Y, Xia W, Zhou Z Y, He K J, Zhong W Z, Wu Y B 2010 Chin. Phys. B 19 024601

    [23]
    [24]
    [25]

    Nakashima H, Shioji Y, Kobayashi T, Aoki S, Shimizu H, Miyasaka J, Ohdoi K 2011 J. Terramechanics 48 17

    [26]
    [27]

    Goniva C, Kloss C, Deen N G, Kuipers J A M, Pirker S 2012 Particuology 10 582

    [28]
    [29]

    Ai J, Chen J F, Rotter J M, Ooi J Y 2011 Powder Technol. 206 269

    [30]
    [31]

    Zhou Y C, Wright B D, Yang R Y, Xu B H, Yu A B 1999 Physica A 269 536

    [32]
    [33]

    Zhou Y C, Xu B H, Yu A B, Zulli P 2002 Powder Technol. 125 45

    [34]
    [35]

    Persson A S, Alderborn G, Frenning G 2011 Eur. J. Pharm. Sci. 42 199

    [36]
    [37]

    Temizer I 2013 Tribol. Int. 67 229

    [38]
    [39]

    Wensrich C M, Katterfeld A 2012 Powder Technol. 217 409

    [40]

    Wiacek J, Molenda M, Horabik J, Ooi J Y 2012 Powder Technol. 217 435

    [41]
    [42]
    [43]

    Cleary P W 2013 Powder Technol. 248 103

    [44]

    Combarros M, Feise H J, Zetzener H, Kwade A Particuology (in press)

    [45]
    [46]

    Zhong W Z, He K J, Zhou Z Y, Xia W, Li Y Y 2009 Acta Phys. Sin. 58 5155 (in Chinese)[钟文镇, 何克晶, 周照耀, 夏伟, 李元元 2009 58 5155]

    [47]
    [48]

    Xie X M, Jiang Y M, Wang H Y, Cao X P, Liu Y 2003 Acta Phys. Sin. 52 2194 (in Chinese)[谢晓明, 蒋亦民, 王焕友, 曹晓平, 刘佑 2003 52 2194]

    [49]
  • [1] 肖友鹏, 王怀平, 冯林. 硒化亚锗异质结太阳电池模拟研究.  , 2023, 72(24): 248801. doi: 10.7498/aps.72.20231220
    [2] 宋岩, 江鸿翔, 赵九洲, 何杰, 张丽丽, 李世欣. Al-Ti-B细化工业纯铝凝固组织演变过程数值模拟.  , 2021, 70(8): 086402. doi: 10.7498/aps.70.20201431
    [3] 成浩, 韩培锋, 苏有文. 基于离散元方法的松散体滑动堆积特性 及影响因素分析.  , 2020, 69(16): 164501. doi: 10.7498/aps.69.20200223
    [4] 朱炳辉, 杨爱香, 牛书通, 陈熙萌, 周旺, 邵剑雄. 100 keV质子与低高能质子在绝缘微孔中输运特性的对比分析.  , 2018, 67(1): 013401. doi: 10.7498/aps.67.20171701
    [5] 赵子渊, 李昱君, 王富帅, 张祺, 厚美瑛, 李文辉, 马钢. 玻璃-橡胶混合颗粒体系的弹性行为研究.  , 2018, 67(10): 104502. doi: 10.7498/aps.67.20172772
    [6] 栗苹, 许玉堂. 氧空位迁移造成的氧化物介质层时变击穿的蒙特卡罗模拟.  , 2017, 66(21): 217701. doi: 10.7498/aps.66.217701
    [7] 严大东, 张兴华. 聚合物结晶理论进展.  , 2016, 65(18): 188201. doi: 10.7498/aps.65.188201
    [8] 陈琼, 王青花, 赵闯, 张祺, 厚美瑛. 玻璃-橡胶混合颗粒的力学响应研究.  , 2015, 64(15): 154502. doi: 10.7498/aps.64.154502
    [9] 韩燕龙, 贾富国, 曾勇, 王爱芳. 受碾区域内颗粒轴向流动特性的离散元模拟.  , 2015, 64(23): 234502. doi: 10.7498/aps.64.234502
    [10] 孟凡净, 刘焜. 密集剪切颗粒流中速度波动和自扩散特性的离散元模拟.  , 2014, 63(13): 134502. doi: 10.7498/aps.63.134502
    [11] 钟春良, 耿魁伟, 姚若河. a-Si:H/c-Si 异质结太阳电池 J-V 曲线的 S-Shape 现象.  , 2010, 59(9): 6538-6544. doi: 10.7498/aps.59.6538
    [12] 刘耀民, 刘中良, 黄玲艳. 分形理论结合相变动力学的冷表面结霜过程模拟.  , 2010, 59(11): 7991-7997. doi: 10.7498/aps.59.7991
    [13] 宜晨虹, 慕青松, 苗天德. 重力作用下颗粒介质应力链的离散元模拟.  , 2009, 58(11): 7750-7755. doi: 10.7498/aps.58.7750
    [14] 钟文镇, 何克晶, 周照耀, 夏伟, 李元元. 颗粒离散元模拟中的阻尼系数标定.  , 2009, 58(8): 5155-5161. doi: 10.7498/aps.58.5155
    [15] 彭光含, 孙棣华, 何恒攀. 交通流双车跟驰模型与数值仿真.  , 2008, 57(12): 7541-7546. doi: 10.7498/aps.57.7541
    [16] 封 伟, 高中扩. 有机光伏电池物理性能的模拟.  , 2008, 57(4): 2567-2573. doi: 10.7498/aps.57.2567
    [17] 宜晨虹, 慕青松, 苗天德. 带有点缺陷的二维颗粒系统离散元模拟.  , 2008, 57(6): 3636-3640. doi: 10.7498/aps.57.3636
    [18] 来国军, 刘濮鲲. W波段回旋行波管放大器的模拟与设计.  , 2006, 55(1): 321-325. doi: 10.7498/aps.55.321
    [19] 路 阳, 王 帆, 朱昌盛, 王智平. 等温凝固多晶粒生长相场法模拟.  , 2006, 55(2): 780-785. doi: 10.7498/aps.55.780
    [20] 王培林, 丁天骅, 蔡珣. 超薄晶体膜生长过程的计算机模拟.  , 2002, 51(9): 2109-2112. doi: 10.7498/aps.51.2109
计量
  • 文章访问数:  8602
  • PDF下载量:  749
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-17
  • 修回日期:  2014-02-18
  • 刊出日期:  2014-09-05

/

返回文章
返回
Baidu
map