-
基于高定向热解石墨晶体(highly oriented pyrolitic graphite,HOPG)研制了一种新型反射式X射线谱仪. 该谱仪具有高反射效率、较高能谱分辨率及相对较宽的能谱测量范围. 根据计算,在相同的入射条件下,该谱仪的效率比一般X射线弯晶谱仪高3个量级;谱仪能谱分辨率理论值最高达350;理论探测范围是6.891 keV至9.193 keV. 我们将该谱仪应用在高功率密度激光与固体靶相互作用的实验中,发现在普通弯晶谱仪无法采到信号的实验条件下,HOPG谱仪依然采集到清晰的Cu K谱线. 分析发现在8.048 keV(Cu的Kup光子能量)附近的能谱分辨能力最高达到40 eV,分辨率200.
-
关键词:
- 高定向性的热解石墨晶体 /
- X射线 /
- 高反射效率谱仪
A novel design of X-ray spectrometer is implemented, using a high efficiency HOPG (highly oriented pyrolitic graphite) Bragg crystal. The spectral resolution of it can reach above 350 with energy ranging from 6.891 to 9.193 keV, theoretically. And the efficiency are 3 order of magnitude higher than the ordinary X-ray crystal spectrometer. Application of this instrument is demonstrated in high intensity laser-foil interaction experiments. It is shown that HOPG spectrometer has much lower threshold of X-ray intensity than ordinary one. The spectral resolution for 8.048 keV (Cu Kup -line) can reach 40 eV, which gives the spectral resolution 200.[1] Wang S J, Dong Q L, Zhang Y, Li Y T, Zhang L, Shinsuke Fujioka, Norimasa Yamamoto, Hiroaki Nishimura, Zhang J 2010 Chin. Phys. Lett. 27 125202
[2] 2010 Chin. Phys. Lett. 27 035201
[3] [4] Wang R R, Chen W M, Wang W, Dong J Q, Xiao S L 2010 Chin. Phys. B 19 075202
[5] [6] [7] Kahn S M, Behar E, Kinkhabwala A, Savin D W 2002 Philos. Trans. R. Soc. London Ser. A 360 1923
[8] [9] Koester P, Akli K, Antonicci A, Batani D, Baton S, Evans R G, Foerster E 2009 Plasma Phys. Controlled Fusion 51 014007
[10] Faenov A Y, Magunov A I, Pikuz T A, Skobelev I Y, Gasilov S V, Stagira S, Calegari F, Nisoli M, De Silvestri S, Poletto L, Villoresi P, Andreev A A 2007 Laser Part. Beams 25 267
[11] [12] [13] Brambrink E, Wei H G, Barbrel B, Audebert P, Benuzzi-Mounaix A, Boehly T, Endo T, Gregory C, Kimura T, Kodama R, Ozaki N, Park H S, Gloahec M R l, Koenig M 2009 Phys. Plasmas 16 033101
[14] [15] Chen L M, Kando M, Xu M H, Li Y T, Koga J, Chen M, Xu H, Yuan X H, Dong Q L, Sheng Z M, Bulanov S V, Kato Y, Zhang J, Tajima T 2008 Phys. Rev. Lett. 100 045004
[16] [17] Chen L M, Liu F, Wang W M, Kando M, Mao J Y, Zhang L, Ma J L, Li Y T, Bulanov S V, Tajima T, Kato Y, Sheng Z M, Wei Z Y, Zhang J 2010 Phys. Rev. Lett. 104 215004
[18] Sun Y Q, Chen L M, Zhang L, Mao J Y, Liu F, Li D Z, Liu C, Li W C, Wang Z H, Li Y J, Wei Z Y, Zhang J 2012 Acta Phys. Sin. 61 075206 (in Chinese)[孙彦乾, 陈黎明, 张璐, 毛婧一, 刘峰, 李大章, 刘成, 李伟昌, 王兆华, 李英骏, 魏志义, 张杰 2012 61 075206]
[19] [20] [21] Lin X X, Li Y T, Liu B C, Liu F, Du F, Wang S J, Lu X, Chen L M, Zhang L, Liu X, Wang J, Liu F, Liu X L, Wang Z H, Ma J L, Wei Z Y, Zhang J 2010 Phys. Rev. E 82 046401
[22] Ohleraz M, Baruchel J, Moore A W, Ph. Galezd A 1997 Freund Nuclear Instruments and Methods in Physics Research B 129 257
[23] [24] [25] Moore A W, Chemistry and Physics of Carbon. Vol. 11, ed. P. L. Walker Jr. (Marcel Dekker, New York) p69
[26] Zabel H, Solin S A, eds. 1990 Graphite Intercalation Compounds I, Springer Series in Material Science (Springer: Berlin)
[27] [28] [29] Yuan X H, Carroll D C, Coury M, Gray R J, Brenner C M, Lin X X, Li Y T, Quinn M N, Tresca O, Zielbauer B, Neely D, McKenna P 2011 Nuclear Instruments and Methods in Physics Research A 653 145
[30] [31] Pak A, Gregori G, Knight J, Campbell K, Price D, Hammel B, Landen O L, Glenzer S H 2004 Rev. Sci. Instrum. 75 3747
[32] -
[1] Wang S J, Dong Q L, Zhang Y, Li Y T, Zhang L, Shinsuke Fujioka, Norimasa Yamamoto, Hiroaki Nishimura, Zhang J 2010 Chin. Phys. Lett. 27 125202
[2] 2010 Chin. Phys. Lett. 27 035201
[3] [4] Wang R R, Chen W M, Wang W, Dong J Q, Xiao S L 2010 Chin. Phys. B 19 075202
[5] [6] [7] Kahn S M, Behar E, Kinkhabwala A, Savin D W 2002 Philos. Trans. R. Soc. London Ser. A 360 1923
[8] [9] Koester P, Akli K, Antonicci A, Batani D, Baton S, Evans R G, Foerster E 2009 Plasma Phys. Controlled Fusion 51 014007
[10] Faenov A Y, Magunov A I, Pikuz T A, Skobelev I Y, Gasilov S V, Stagira S, Calegari F, Nisoli M, De Silvestri S, Poletto L, Villoresi P, Andreev A A 2007 Laser Part. Beams 25 267
[11] [12] [13] Brambrink E, Wei H G, Barbrel B, Audebert P, Benuzzi-Mounaix A, Boehly T, Endo T, Gregory C, Kimura T, Kodama R, Ozaki N, Park H S, Gloahec M R l, Koenig M 2009 Phys. Plasmas 16 033101
[14] [15] Chen L M, Kando M, Xu M H, Li Y T, Koga J, Chen M, Xu H, Yuan X H, Dong Q L, Sheng Z M, Bulanov S V, Kato Y, Zhang J, Tajima T 2008 Phys. Rev. Lett. 100 045004
[16] [17] Chen L M, Liu F, Wang W M, Kando M, Mao J Y, Zhang L, Ma J L, Li Y T, Bulanov S V, Tajima T, Kato Y, Sheng Z M, Wei Z Y, Zhang J 2010 Phys. Rev. Lett. 104 215004
[18] Sun Y Q, Chen L M, Zhang L, Mao J Y, Liu F, Li D Z, Liu C, Li W C, Wang Z H, Li Y J, Wei Z Y, Zhang J 2012 Acta Phys. Sin. 61 075206 (in Chinese)[孙彦乾, 陈黎明, 张璐, 毛婧一, 刘峰, 李大章, 刘成, 李伟昌, 王兆华, 李英骏, 魏志义, 张杰 2012 61 075206]
[19] [20] [21] Lin X X, Li Y T, Liu B C, Liu F, Du F, Wang S J, Lu X, Chen L M, Zhang L, Liu X, Wang J, Liu F, Liu X L, Wang Z H, Ma J L, Wei Z Y, Zhang J 2010 Phys. Rev. E 82 046401
[22] Ohleraz M, Baruchel J, Moore A W, Ph. Galezd A 1997 Freund Nuclear Instruments and Methods in Physics Research B 129 257
[23] [24] [25] Moore A W, Chemistry and Physics of Carbon. Vol. 11, ed. P. L. Walker Jr. (Marcel Dekker, New York) p69
[26] Zabel H, Solin S A, eds. 1990 Graphite Intercalation Compounds I, Springer Series in Material Science (Springer: Berlin)
[27] [28] [29] Yuan X H, Carroll D C, Coury M, Gray R J, Brenner C M, Lin X X, Li Y T, Quinn M N, Tresca O, Zielbauer B, Neely D, McKenna P 2011 Nuclear Instruments and Methods in Physics Research A 653 145
[30] [31] Pak A, Gregori G, Knight J, Campbell K, Price D, Hammel B, Landen O L, Glenzer S H 2004 Rev. Sci. Instrum. 75 3747
[32]
计量
- 文章访问数: 5698
- PDF下载量: 424
- 被引次数: 0