-
随着器件尺寸进一步等比例缩小,高k材料HfO2作为俘获层的电荷俘获型存储器展现了较好的耐受性和较强的存储能力,且工艺相对简单,与传统半导体工艺完全兼容,因此得到了广泛的研究. 为研究HfO2中氧空位引入的缺陷能级对电荷俘获型存储器存储特性的影响,运用第一性原理计算分析了HfO2中的氧空位缺陷. 通过改变缺陷超胞中的电子数模拟器件的写入和擦除操作,发现氧空位对电荷的俘获基本上不受氧空位之间距离的影响,而氧空位个数则影响对电子的俘获,氧空位数多,俘获电子的能力就强. 此外,四价配位的氧空位俘获电子的能力比三价配位的氧空位大. 态密度分析发现四价配位的氧空位引入深能级量子态数大,并且受氧空位之间的距离影响小,对电子的俘获概率大. 结果表明,HfO2中四价配位的氧空位缺陷有利于改善电荷俘获型存储器的存储特性.With the further scaling down of device dimensions, charge trapping memory with high k materials HfO2 serving as capture layer shows good endurance and high storage capacity. Its relatively simple process and complete compatibility with the conventional semiconductor process furthermore make it widely studied. The oxygen vacancies in HfO2 are studied using the first-principles calculation in order to learn their influence on the storage properties of charge trapping memory. Write and erase operations of memory devices are simulated via changing the number of electrons in the super cell with defects. The results show that basically the distance between oxygen vacancies has no effect on charge trapping, but the number of oxygen vacancies does affect it. The more the number of oxygen vacancies, the stronger the electron capture ability is. Moreover, four-fold coordinated oxygen vacancy (Vo4) has lager capability for trapping charge than three-fold coordinated oxygen vacancy (Vo3). The analysis of density of states shows that Vo4 induces a large number of quantum states with deep energy levels which is little affected by distance and has large possibility of trapping charges. The results show that oxygen vacancy defects in HfO2 tetravalent coordination are conducive to improving the storage characteristics of charge trapping memory.
-
Keywords:
- first principles /
- oxygen vacancy /
- charge trapping /
- HfO2
[1] Kang D, Sze S M 1976 Bell. Syst. Tech. J. 46 1288
[2] Kinam K 2005 IEEE International Electron Devices Meeting Washington DC, American, Dec. 5-5, 2005 p323
[3] Lu C Y, Hsieh K Y, Liu R 2009 Microelectron. Eng. 86 283
[4] Songpon P, Sirilux P, Supason P W 2011 ACS Appl. Mater. Interf. 3 3691
[5] Liu Q, Dou C M, Wang Y, Long S B, Wang W, Liu M, Zhang M H, Chen J N 2009 Appl. Phys. Lett. 95 023501
[6] Jin L, Zhang M H, Huo Z L, Yu Z A, Jiang D D, Wang Y, Bai J, Chen J N, Liu M 2012 China Tech. Sci. 55 888
[7] Molas G, Bocquet M, Vianello E, Perniola L, Grampeix H, Colonna J P, Masarotto L, Martin F, Brianceau P, Gély M, Bongiorno C, Lombardo S, Pananakakis G, Ghibaudo G, Salvo B D 2009 Microelectron. Eng. 86 1796
[8] Larcher L, Padovani A 2010 Microelectron. Reliab. 50 1251
[9] Wang Y Q, Gao D Y, Hwang W S, Shen C, Zhang G, Samudra G, Yeo Y C, Yoo W J 2006 IEEE International Electron Devices Meeting San Francisco CA, American, Dec. 11-13, 2006 p1
[10] Liu J, Wang Q, Long S B, Zhang M H, Liu M 2010 Semicond. Sci. Technol. 25 055013
[11] Zhang Y Y, Hu J P, Bernevig B A, Wang X R, Xie X C, Liu W M 2008 Phys. Rev. B 78 155413
[12] Zhang X L, Liu L F, Liu W M 2013 Scientific Reports 3 2908
[13] Zhang W, Hou Z F 2013 Phys. Status Solidi 250 352
[14] Zheng J X, Ceder G, Maxisch T 2007 Phys. Rev. B 75 104112
[15] Zhang H W, Gao B, Yu S M, Lai L, Zeng L, Sun B, Liu L F, Liu X Y, Lu J, Han R Q, Kang J F 2009 International Conference on Simulation of Semiconductor Processes and Devices San Diego CA, American, Sept. 9-11, 2009 p1
[16] Foster A S, Lopez G F, Shluger A L, Nieminen R M 2002 Phys. Rev. B 65 174117
[17] Cockayne E 2007 Phys. Rev. B 75 094103
[18] You H W, Choa W J 2010 Appl. Phys. Lett. 96 093506
[19] Maikap S, Lee H Y, Wang T Y, Tzeng P J, Wang C C, Lee L S, Liu K C, Yang J R, Tsai M J 2007 Semicond. Sci. Technol. 22 884
[20] Liu X, Zhao G F, Guo L J, Wang X W, Zhang J, Jing Q, Luo Y H 2007 Chin. Phys. B 16 3359
[21] Bai Y L, Chen X R, Cheng X H, Yang X D 2007 Chin. Phys. B 16 700
[22] Yao H Y, Gu X, Ji M, Zhang D E, Gong X G 2006 Acta Phys. Sin. 55 6402 (in Chinese) [姚红英, 顾晓, 季敏, 张笛儿, 龚新高 2006 55 6042]
[23] Kresse G, Furthmller J 1996 Canadian Metallurgical Quarterly 54 11169
[24] Kresse G, Joubert D 1999 Phys. Rev. B 59 1758
[25] Perdew J P, Burke K, Ernzerhof M 1997 Phys. Rev. Lett. 77 3865
[26] Whittle K R, Lumpkin G R, Ashbrook S E 2006 J. Solid State Chem. 179 512
[27] Song Y C, Liu X Y, Du G, Kang J F, Han R Q 2008 Chin. Phys. B 17 2678
[28] Gritsenko V A, Nekrashevich S S, Vasilev V V, Shaposhnikov A V 2009 Microelectron. Eng. 86 1866
[29] Garcia J C, Lino A T, Scolfaro L M R, Leite J R, Freire V N, Farias G A, Silva da Jr E F 2005 27th International Conference on the Physics of Semiconductors Arizona, American, July 26-30, 2005 p189
[30] Hsu T H, You H C, Ko F H, Lei T F 2006 Electrochem. Soc. 153 G934
[31] Sabina S F D, Alessio Lamperti G C, Salicio O 2012 Appl. Phys. Express 5 21102
-
[1] Kang D, Sze S M 1976 Bell. Syst. Tech. J. 46 1288
[2] Kinam K 2005 IEEE International Electron Devices Meeting Washington DC, American, Dec. 5-5, 2005 p323
[3] Lu C Y, Hsieh K Y, Liu R 2009 Microelectron. Eng. 86 283
[4] Songpon P, Sirilux P, Supason P W 2011 ACS Appl. Mater. Interf. 3 3691
[5] Liu Q, Dou C M, Wang Y, Long S B, Wang W, Liu M, Zhang M H, Chen J N 2009 Appl. Phys. Lett. 95 023501
[6] Jin L, Zhang M H, Huo Z L, Yu Z A, Jiang D D, Wang Y, Bai J, Chen J N, Liu M 2012 China Tech. Sci. 55 888
[7] Molas G, Bocquet M, Vianello E, Perniola L, Grampeix H, Colonna J P, Masarotto L, Martin F, Brianceau P, Gély M, Bongiorno C, Lombardo S, Pananakakis G, Ghibaudo G, Salvo B D 2009 Microelectron. Eng. 86 1796
[8] Larcher L, Padovani A 2010 Microelectron. Reliab. 50 1251
[9] Wang Y Q, Gao D Y, Hwang W S, Shen C, Zhang G, Samudra G, Yeo Y C, Yoo W J 2006 IEEE International Electron Devices Meeting San Francisco CA, American, Dec. 11-13, 2006 p1
[10] Liu J, Wang Q, Long S B, Zhang M H, Liu M 2010 Semicond. Sci. Technol. 25 055013
[11] Zhang Y Y, Hu J P, Bernevig B A, Wang X R, Xie X C, Liu W M 2008 Phys. Rev. B 78 155413
[12] Zhang X L, Liu L F, Liu W M 2013 Scientific Reports 3 2908
[13] Zhang W, Hou Z F 2013 Phys. Status Solidi 250 352
[14] Zheng J X, Ceder G, Maxisch T 2007 Phys. Rev. B 75 104112
[15] Zhang H W, Gao B, Yu S M, Lai L, Zeng L, Sun B, Liu L F, Liu X Y, Lu J, Han R Q, Kang J F 2009 International Conference on Simulation of Semiconductor Processes and Devices San Diego CA, American, Sept. 9-11, 2009 p1
[16] Foster A S, Lopez G F, Shluger A L, Nieminen R M 2002 Phys. Rev. B 65 174117
[17] Cockayne E 2007 Phys. Rev. B 75 094103
[18] You H W, Choa W J 2010 Appl. Phys. Lett. 96 093506
[19] Maikap S, Lee H Y, Wang T Y, Tzeng P J, Wang C C, Lee L S, Liu K C, Yang J R, Tsai M J 2007 Semicond. Sci. Technol. 22 884
[20] Liu X, Zhao G F, Guo L J, Wang X W, Zhang J, Jing Q, Luo Y H 2007 Chin. Phys. B 16 3359
[21] Bai Y L, Chen X R, Cheng X H, Yang X D 2007 Chin. Phys. B 16 700
[22] Yao H Y, Gu X, Ji M, Zhang D E, Gong X G 2006 Acta Phys. Sin. 55 6402 (in Chinese) [姚红英, 顾晓, 季敏, 张笛儿, 龚新高 2006 55 6042]
[23] Kresse G, Furthmller J 1996 Canadian Metallurgical Quarterly 54 11169
[24] Kresse G, Joubert D 1999 Phys. Rev. B 59 1758
[25] Perdew J P, Burke K, Ernzerhof M 1997 Phys. Rev. Lett. 77 3865
[26] Whittle K R, Lumpkin G R, Ashbrook S E 2006 J. Solid State Chem. 179 512
[27] Song Y C, Liu X Y, Du G, Kang J F, Han R Q 2008 Chin. Phys. B 17 2678
[28] Gritsenko V A, Nekrashevich S S, Vasilev V V, Shaposhnikov A V 2009 Microelectron. Eng. 86 1866
[29] Garcia J C, Lino A T, Scolfaro L M R, Leite J R, Freire V N, Farias G A, Silva da Jr E F 2005 27th International Conference on the Physics of Semiconductors Arizona, American, July 26-30, 2005 p189
[30] Hsu T H, You H C, Ko F H, Lei T F 2006 Electrochem. Soc. 153 G934
[31] Sabina S F D, Alessio Lamperti G C, Salicio O 2012 Appl. Phys. Express 5 21102
计量
- 文章访问数: 7171
- PDF下载量: 710
- 被引次数: 0