搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ag纳米颗粒增强的Ho3+/Tm3+共掺铋锗酸盐玻璃的2m发光研究

薛冰 许银生 李烟塬 戚嘉妮 鲁珊珊 鲁克伦 陈丽艳 张绍骞 戴世勋

引用本文:
Citation:

Ag纳米颗粒增强的Ho3+/Tm3+共掺铋锗酸盐玻璃的2m发光研究

薛冰, 许银生, 李烟塬, 戚嘉妮, 鲁珊珊, 鲁克伦, 陈丽艳, 张绍骞, 戴世勋

Ag nanoparticles enhanced 2 um luminescences of Ho3+/Tm3+ codoped bismuth germanate glasses

Xue Bing, Xu Yin-Sheng, Li Yan-Yuan, Qi Jia-Ni, Lu Shan-Shan, Lu Ke-Lun, Chen Li-Yan, Zhang Shao-Qian, Dai Shi-Xun
PDF
导出引用
  • 采用基于传统熔融淬冷技术的热化学还原法制备了系列Ag纳米颗粒复合Ho3+/Tm3+ 共掺铋锗酸盐玻璃样品,研究了Ag纳米颗粒含量对玻璃2 m发光特性的影响. 结果表明,Ag纳米颗粒的表面等离子体共振带位于500900 nm,峰值位于650 nm,透射电子显微镜图像中观察到均匀分布的Ag纳米颗粒,尺寸约为510 nm. 通过测试玻璃样品在1.72.3 um 波段的荧光光谱发现,Ag掺杂后Ho3+ 离子2 m处的荧光强度得到了极大的提高,其中AgCl掺杂质量分数为0.3%时的荧光强度比未掺杂时的荧光强度增强10倍,这归因于Ag纳米颗粒的局域场增强作用. 计算得到Ho3+离子的吸收截面为0.49110-20 cm-2,发射截面为1.0310-20 cm-2,当增益系数为0.2时即可实现正的增益.
    The Ho3+/Tm3+ codoped bismuth germanate glasses containing Ag nanoparticles (NPs) are synthesized by a chemical reduction method based on the conventional melting-quenching technique. The effect of concentration of Ag NPs on the 2 um emission is studied. The absorption band related to the surface plasmon resonance (SPR) of the Ag NPs is located in a range from 500 to 900 nm. Transmission electron microscopic image clearly reveals homogeneously dispersed Ag NPs with the sizes ranging from 5 to 10 nm. The luminescence spectra in a range of 1.7-2.3 um are collected. With the addition mass fraction of the AgCl up to 0.3%, the intensity of emission band of Ho3+ ions, centered at 2.03 um, is increased by 10 folds. The enhancement of 2 um luminescence is attributed to the enhanced local field induced by SPR of Ag NPs. The calculated absorption cross section and emission cross section are 0.491 10-20 cm-2 and 1.0310-20 cm-2, respectively. When the gain coefficient p=0.2, the positive gain would be realised.
    • 基金项目: 国家自然科学基金(批准号:61205181,61308092)、浙江省自然科学基金(批准号:LQ12E02003)、宁波市自然科学基金(批准号:2012A610122)、浙江省教育厅科研计划(批准号:Y201120457)、教育部留学回国人员科研启动基金和宁波大学王宽诚幸福基金资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61205181, 61308092), the Natural Science Foundation of Zhejiang Province, China (Grant No. LQ12E02003), the Natural Science Foundation of Ningbo, China (Grant No. 2012A610122), the Scientific Research Program of Education Bureau of Zhejiang Province, China (Grant No. Y201120457), the Scientific Research Staring Foundation for the Returned Overseas Chinese Scholars of Ministry of Education, China, and K. C. Wong Magna Foundation in Ningbo University, China.
    [1]

    Zhu J, Dai S X, Peng B, Shen X, Wang X S, Xu T F, Nie Q H 2010 Acta Phys. Sin. 59 5803 (in Chinese) [朱军, 戴世勋, 彭波, 沈祥, 王训四, 徐铁峰, 聂秋华 2010 59 5803]

    [2]

    Dai S X, Peng B, Le F D, Wang X S, Shen X, Xu T F, Nie Q H 2010 Acta Phys. Sin. 59 3547 (in Chinese) [戴世勋, 彭波, 乐放达, 王训四, 沈祥, 徐铁峰, 聂秋华 2010 59 3547]

    [3]

    Richards B, Shen S, Jha A, Tsang Y, Binks D 2007 Opt. Express 15 6546

    [4]

    Zhang X L, Wang Y Z, Shi H F 2006 Acta Phys. Sin. 55 1787 (in Chinese) [张新陆, 王月珠, 史洪峰 2006 55 1787]

    [5]

    Yi L, Wang M, Feng S, Chen Y, Wang G, Hu L, Zhang J 2009 Opt. Mater. 31 1586

    [6]

    Huang D D, Yang Q H, Wang Y G, Zhang H J, Lu S Z, Zou Y W, Wei Z Y 2013 Chin. Phys. B 22 037801

    [7]

    Wang J G, Zhang Z G, Xu J Z, Xu J R, Fu P M, Chen X B 2000 Chin. Phys. 9 210

    [8]

    Wei S, Xu Y, Dai S, Zhou Y, Lin C, Zhang P 2013 Physica B 416 64 68

    [9]

    Zhang W J, Zhang Q Y, Chen Q J, Qian Q, Yang Z M, Qiu J R, Huang P, Wang Y S 2009 Opt. Express 17 20952

    [10]

    Tong J B, Huang Q, Zhang X D, Zhang C S, Zhao Y 2012 Acta Phys. Sin. 61 047801 (in Chinese)[佟建波, 黄茜, 张晓丹, 张存善, 赵颖 2012 61 047801]

    [11]

    Wu Y, Shen X, Dai S, Xu Y, Chen F, Lin C, Xu T, Nie Q 2011 J. Phys. Chem. C 115 25040

    [12]

    Qi J, Xu T, Wu Y, Shen X, Dai S, Xu Y 2013 Opt. Mater. 35 2502

    [13]

    Guo H, Wang X, Chen J, Li F 2010 Opt. Express 18 18900

    [14]

    Yu W, Wang X Z, Dai W L, Lu W B, Liu Y M, Fu G S 2013 Chin. Phys. B 22 057804

    [15]

    Eichelbaum M, Rademann K 2009 Adv. Funct. Mater. 19 2045

    [16]

    Chen F, Dai S, Xu T, Shen X, Lin C, Nie Q, Liu C, Heo J 2011 Chem. Phys. Lett. 514 79

    [17]

    Tikhomirov V K, Méndez-Ramos J, Rodríguez V D, Furniss D, Seddon A B 2007 J. Alloys Compd. 436 216

  • [1]

    Zhu J, Dai S X, Peng B, Shen X, Wang X S, Xu T F, Nie Q H 2010 Acta Phys. Sin. 59 5803 (in Chinese) [朱军, 戴世勋, 彭波, 沈祥, 王训四, 徐铁峰, 聂秋华 2010 59 5803]

    [2]

    Dai S X, Peng B, Le F D, Wang X S, Shen X, Xu T F, Nie Q H 2010 Acta Phys. Sin. 59 3547 (in Chinese) [戴世勋, 彭波, 乐放达, 王训四, 沈祥, 徐铁峰, 聂秋华 2010 59 3547]

    [3]

    Richards B, Shen S, Jha A, Tsang Y, Binks D 2007 Opt. Express 15 6546

    [4]

    Zhang X L, Wang Y Z, Shi H F 2006 Acta Phys. Sin. 55 1787 (in Chinese) [张新陆, 王月珠, 史洪峰 2006 55 1787]

    [5]

    Yi L, Wang M, Feng S, Chen Y, Wang G, Hu L, Zhang J 2009 Opt. Mater. 31 1586

    [6]

    Huang D D, Yang Q H, Wang Y G, Zhang H J, Lu S Z, Zou Y W, Wei Z Y 2013 Chin. Phys. B 22 037801

    [7]

    Wang J G, Zhang Z G, Xu J Z, Xu J R, Fu P M, Chen X B 2000 Chin. Phys. 9 210

    [8]

    Wei S, Xu Y, Dai S, Zhou Y, Lin C, Zhang P 2013 Physica B 416 64 68

    [9]

    Zhang W J, Zhang Q Y, Chen Q J, Qian Q, Yang Z M, Qiu J R, Huang P, Wang Y S 2009 Opt. Express 17 20952

    [10]

    Tong J B, Huang Q, Zhang X D, Zhang C S, Zhao Y 2012 Acta Phys. Sin. 61 047801 (in Chinese)[佟建波, 黄茜, 张晓丹, 张存善, 赵颖 2012 61 047801]

    [11]

    Wu Y, Shen X, Dai S, Xu Y, Chen F, Lin C, Xu T, Nie Q 2011 J. Phys. Chem. C 115 25040

    [12]

    Qi J, Xu T, Wu Y, Shen X, Dai S, Xu Y 2013 Opt. Mater. 35 2502

    [13]

    Guo H, Wang X, Chen J, Li F 2010 Opt. Express 18 18900

    [14]

    Yu W, Wang X Z, Dai W L, Lu W B, Liu Y M, Fu G S 2013 Chin. Phys. B 22 057804

    [15]

    Eichelbaum M, Rademann K 2009 Adv. Funct. Mater. 19 2045

    [16]

    Chen F, Dai S, Xu T, Shen X, Lin C, Nie Q, Liu C, Heo J 2011 Chem. Phys. Lett. 514 79

    [17]

    Tikhomirov V K, Méndez-Ramos J, Rodríguez V D, Furniss D, Seddon A B 2007 J. Alloys Compd. 436 216

  • [1] 田淼, 姚廷昱, 才志民, 刘富成, 贺亚峰. 尘埃等离子体棘轮中颗粒分离的三维模拟.  , 2024, 73(11): 115201. doi: 10.7498/aps.73.20240319
    [2] 黄君辉, 李元和, 王健, 李叔伦, 倪海桥, 牛智川, 窦秀明, 孙宝权. 静水压力调谐Ag纳米颗粒散射场下量子点激子寿命.  , 2022, 71(24): 247302. doi: 10.7498/aps.71.20221344
    [3] 熊磊. 银纳米粒子阵列中衍射诱导高品质因子的四偶极晶格等离子体共振.  , 2021, (): . doi: 10.7498/aps.70.20211629
    [4] 徐超, 丁继军, 陈海霞, 李国利. Ag纳米线四聚体中的局域表面等离子体共振腔模态变化.  , 2021, 70(23): 235201. doi: 10.7498/aps.70.20211230
    [5] 贾博仑, 邓玲玲, 陈若曦, 张雅男, 房旭民. 利用Ag@SiO2纳米粒子等离子体共振增强发光二极管辐射功率的数值研究.  , 2017, 66(23): 237801. doi: 10.7498/aps.66.237801
    [6] 宫卫华, 张永亮, 冯帆, 刘富成, 贺亚峰. 非均匀磁场尘埃等离子体中颗粒的复杂运动.  , 2015, 64(19): 195202. doi: 10.7498/aps.64.195202
    [7] 徐天宁, 李翔, 贾文旺, 隋成华, 吴惠桢. 五边形截面的Ag纳米线局域表面等离子体共振模式.  , 2015, 64(24): 245201. doi: 10.7498/aps.64.245201
    [8] 王媛, 董瑞新, 闫循领. 嵌入Ag纳米颗粒层的DNA忆阻器.  , 2015, 64(4): 048402. doi: 10.7498/aps.64.048402
    [9] 任艳东, 郝淑娟, 邱忠阳. 表面等离子体增强氧化锌纳米带发光特性的研究.  , 2013, 62(14): 147302. doi: 10.7498/aps.62.147302
    [10] 佟建波, 黄茜, 张晓丹, 张存善, 赵颖. 纳米Ag颗粒表面等离子激元对上转换材料光致发光性能影响的研究.  , 2012, 61(4): 047801. doi: 10.7498/aps.61.047801
    [11] 朱军, 戴世勋, 王训四, 沈祥, 徐铁峰, 聂秋华. Pr3+/Ho3+共掺Ge-Ga-Se玻璃的2.9 μm荧光特性的研究.  , 2010, 59(8): 5803-5807. doi: 10.7498/aps.59.5803
    [12] 戴世勋, 彭波, 乐放达, 王训四, 沈祥, 徐铁峰, 聂秋华. Dy3+掺杂Ge-Ga-S-CsI玻璃中红外发光特性研究.  , 2010, 59(5): 3547-3553. doi: 10.7498/aps.59.3547
    [13] 洪小刚, 徐文东, 李小刚, 赵成强, 唐晓东. 数值模拟探针诱导表面等离子体共振耦合纳米光刻.  , 2008, 57(10): 6643-6648. doi: 10.7498/aps.57.6643
    [14] 洪 昕, 杜丹丹, 裘祖荣, 张国雄. 半壳结构金纳米膜的局域表面等离子体共振效应.  , 2007, 56(12): 7219-7223. doi: 10.7498/aps.56.7219
    [15] 徐 慧, 盛政明, 张 杰. 相对论效应对激光在等离子体中的共振吸收的影响.  , 2006, 55(10): 5354-5361. doi: 10.7498/aps.55.5354
    [16] 奚衍斌, 张 宇, 王晓钢, 刘 悦, 余 虹, 姜东光. 调制磁场清除柱形等离子体发生器中的尘埃颗粒.  , 2005, 54(1): 164-172. doi: 10.7498/aps.54.164
    [17] 侯璐景, 王友年. 尘埃颗粒在射频等离子体鞘层中的非线性共振现象的理论研究.  , 2003, 52(2): 434-441. doi: 10.7498/aps.52.434
    [18] 王 龙. 等离子体中的颗粒成长模型.  , 1999, 48(6): 1072-1077. doi: 10.7498/aps.48.1072
    [19] 盛政明, 马锦秀, 徐至展. 光在等离子体中的共振吸收解析研究.  , 1991, 40(10): 1632-1637. doi: 10.7498/aps.40.1632
    [20] 余玮, 徐至展. 激光等离子体中的共振吸收所引起的谐波发射.  , 1984, 33(4): 547-553. doi: 10.7498/aps.33.547
计量
  • 文章访问数:  5926
  • PDF下载量:  524
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-19
  • 修回日期:  2014-01-24
  • 刊出日期:  2014-05-05

/

返回文章
返回
Baidu
map