-
利用简单的化学气相沉积方法在低温下高产量地合成了ZnO纳米带, 并利用磁控溅射对样品进行表面修饰, 制备了Au-ZnO复合纳米带. 通过扫描电镜、透射电镜及微区拉曼等手段系统地研究了表面修饰对ZnO 纳米材料发光性能的影响.结果表明, 在ZnO纳米带上溅射Au纳米颗粒, 可有效增强其近带边发光并使可见发光强度发生淬灭, 从而增强ZnO纳米带的发光性能. ZnO纳米带发光增强因子η最大可达到85倍. 基于Au纳米颗粒的散射、吸收、Purcell增强因子, 以及Ostwald熟化理论, 又进一步探讨了Au-ZnO复合材料的发光机制. 采用表面等离子体耦合的方法可以有效地提高光电半导体器件的发光效率.ZnO nanobelts are synthesized in high yield by a simple chemical vapor deposition method, at low temperature. And then Au nanoparticles are sputtered on the ZnO nanobelts. The effect on the photoluminescence of Au-ZnO composite nanobelts by surface plasmon is systematically investigated by the scanning electron microscopy, transmission electron microscopy and photoluminescence spectrum. The enhancement ratio by surface plasmon resonance and the almost completely suppressed defect emission for Au-ZnO composite nanobelts are observed, and the emission enhancement ratio η of Au-ZnO composite nanobelts reaches a maximal value of 85-fold. Additionally, the photoluminescence mechanism is proposed in terms of the scattering and absorption by Au nanoparticles, the Purcell enhancement factor, and the Ostwald ripening.
-
Keywords:
- surface plasmon /
- photoluminescence /
- ZnO
[1] Bai X D, Gao P X, Wang Z L, Wang E G 2003 Appl. Phys. Lett. 82 4806
[2] Wang Z L, Song J 2006 Science 31 242
[3] Sun H, Zhang Q F, Wu J L 2007 Acta Phys. Sin. 56 3479 (in Chinese) [孙晖, 张琦锋, 吴锦雷 2007 56 3479]
[4] Qiu D J, Fan W Z, Weng S, Wu H Z, Wang J 2011 Acta Phys. Sin. 60 087301 (in Chinese) [邱东江, 范文志, 翁圣, 吴惠桢, 王俊 2011 60 087301]
[5] Lai C W, An J, Ong H C 2005 Appl. Phys. Lett. 86 251105
[6] Yang W F, Chen R, Liu B, Gurzadyan G G, Wong L M, Wang S J, Sun H D 2010 Appl. Phys. Lett. 97 061104
[7] Liu K W, Tang Y D, Cong C X, Sum T C, Huan A C H, Shen Z X, Wang L, Jiang F Y, Sun X W, Sun D 2009 Appl. Phys. Lett. 94 151102
[8] Yang W Y, Gao F M, Wei G D, An L 2010 Cryst. Growth Des. 10 29
[9] Lin J M, Lin H Y, Cheng C L, Chen Y F 2006 Nanotechnology 17 4391
[10] Richters J, Voss T, Wischmeier L, Rckmann I, Gutowski J 2008 Appl. Phys. Lett. 92 011103
[11] Purcell E M 1946 Phys. Rev. 69 681
[12] Li J, Ong H C 2008 Appl. Phys. Lett. 92 121107
-
[1] Bai X D, Gao P X, Wang Z L, Wang E G 2003 Appl. Phys. Lett. 82 4806
[2] Wang Z L, Song J 2006 Science 31 242
[3] Sun H, Zhang Q F, Wu J L 2007 Acta Phys. Sin. 56 3479 (in Chinese) [孙晖, 张琦锋, 吴锦雷 2007 56 3479]
[4] Qiu D J, Fan W Z, Weng S, Wu H Z, Wang J 2011 Acta Phys. Sin. 60 087301 (in Chinese) [邱东江, 范文志, 翁圣, 吴惠桢, 王俊 2011 60 087301]
[5] Lai C W, An J, Ong H C 2005 Appl. Phys. Lett. 86 251105
[6] Yang W F, Chen R, Liu B, Gurzadyan G G, Wong L M, Wang S J, Sun H D 2010 Appl. Phys. Lett. 97 061104
[7] Liu K W, Tang Y D, Cong C X, Sum T C, Huan A C H, Shen Z X, Wang L, Jiang F Y, Sun X W, Sun D 2009 Appl. Phys. Lett. 94 151102
[8] Yang W Y, Gao F M, Wei G D, An L 2010 Cryst. Growth Des. 10 29
[9] Lin J M, Lin H Y, Cheng C L, Chen Y F 2006 Nanotechnology 17 4391
[10] Richters J, Voss T, Wischmeier L, Rckmann I, Gutowski J 2008 Appl. Phys. Lett. 92 011103
[11] Purcell E M 1946 Phys. Rev. 69 681
[12] Li J, Ong H C 2008 Appl. Phys. Lett. 92 121107
计量
- 文章访问数: 5821
- PDF下载量: 734
- 被引次数: 0