搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于增强拉曼散射的光子-原子双模压缩态的实现

邵辉丽 李栋 闫雪 陈丽清 袁春华

引用本文:
Citation:

基于增强拉曼散射的光子-原子双模压缩态的实现

邵辉丽, 李栋, 闫雪, 陈丽清, 袁春华

Generation of two-mode photon-atom quadrature squeezing based on enhanced raman scattering

Shao Hui-Li, Li Dong, Yan Xue, Chen Li-Qing, Yuan Chun-Hua
PDF
导出引用
  • 拉曼散射过程中利用原子系综中初始制备的自旋激发(原子相干性),以及注入与原子系综中初始制备的自旋激发相关联的种子光场都可以极大的提高光场频率转换的效率,实现增强拉曼散射. 本文理论上计算了增强拉曼散射过程中原子-光场量子界面的正交分量的量子起伏,得到了相干性导致的增强拉曼散射,只能在一定的范围内稍微提高初始光子-原子的压缩度;而关联增强拉曼散射,能够制备很强的光子-原子间的双模压缩. 这样强压缩度的光子-原子量子界面,对于利用光场和原子系统实现量子精密测量研究有着非常重要的应用.
    Enhanced Raman scattering can be obtained by the initially prepared atomic spin excitation, or by injecting a seeded light field which is correlated with the initially prepared atomic spin excitation. This paper theoretically calculated the quantum fluctuations of the quadrature components of the two-mode photon-atom quantum interface and found that the enhanced Raman scattering based on coherence can improve the initial photon-atom squeezing slightly in a certain scope, and correlation-enhanced Raman scattering can produce strong two-mode squeezing of photon-atom. Such a strong two-mode squeezed state at the photon-atom interface has very important applications in precision measurement research based on the light field and atomic system.
    • 基金项目: 国家自然科学基金(批准号:11004058,11004059,11274118)、上海市教育委员会科研创新重点项目(批准号:13zz036)、中央高校基本科研业务费专项资金和上海高校青年骨干教师国内访学(批准号:B-8938-11-0553)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11004058, 11004059, 11274118), the Innovation Program of Shanghai Municipal Education Commission, China (Grant No. 13zz036), the fundamental research funds for the central universities, and Shanghai young backbone teachers of colleges and universities domestic visiting scholar program, China (Grant No. B-8938-11-0553).
    [1]

    Walls D F, Milburn G J 1994 Quantum Optics (Berlin: Springer-Verlag) p15

    [2]

    Loudon R, Knight P L 1987 J. Mod. Opt. 34 709

    [3]

    Giovannetti V, Lloyd S, Maccone L 2004 Science 306 1330

    [4]

    Zhang J X, Zhang T C, Xie C D, Peng K C 1999 Chin. Phys. 8 437

    [5]

    Koschorreck M, Napolitano M, Dubost B, Mitchell M W 2010 Phys. Rev. Lett. 105 053601

    [6]

    McCormick C F, Boyer V, Arimondo E, Lett P D 2007 Opt. Lett. 32 178

    [7]

    Caves M 1980 Phys. Rev. Lett. 45 75; Caves M 1981 Phys. Rev. D 23 1693

    [8]

    Xiao M, Wu L A, Kimble H J 1987 Phys. Rev. Lett. 59 278

    [9]

    Nabors C D, Shelby R M 1990 Phys. Rev. A 42 556

    [10]

    Mehmet M, Vahlbruch H, Lastzka N, Danzmann K, Schnabel R 2010 Phys. Rev. A 81 013814

    [11]

    Groß C 2012 Spin squeezing and Nonlinear Atom Interferometry with Bose-Einstein Condensates (Berlin: Springer-Verlag) p5

    [12]

    Ma J, Wang X G, Sun C P, Nori F 2011 Phys. Reports 509 89

    [13]

    Xiong J, Zhang Z M, Niu Z Q 2002 Acta Phys. Sin. 51 2245 (in Chinese) [熊锦, 张智明, 牛中奇 2002 51 2245]

    [14]

    Hu X M, Peng J S 1999 Chin. Phys. Lett. 16 648

    [15]

    L, Y J, Wu L A, Wu M J, Li S Q 1998 Chin. Phys. Lett. 15 109

    [16]

    He G Q, Zhu J, Zeng G H, Yi Z 2007 Acta Phys. Sin. 56 6427 (in Chinese) [何广强, 朱俊, 曾贵华, 易智 2007 56 6427]

    [17]

    Yurke B, McCall S L, Klauder J R 1986 Phys. Rev. A 33 4033

    [18]

    Li D, Yuan C H, Ou Z Y, Zhang W P 2013 arXiv: 1305.4769

    [19]

    Hammerer K, Sørensen A S, Polzik E S 2010 Rev. Mod. Phys. 82 1041

    [20]

    Xie R H, Liu D H, Xu G O 1996 Chin. Phys. Lett. 13 97

    [21]

    Chen L Q, Zhang G W, Yuan C H, Jing J T, Ou Z Y, Zhang W P 2009 Appl. Phys. Lett. 95 041115

    [22]

    Chen L Q, Zhang G W, Bian C L, Yuan C H, Ou Z Y, Zhang W P 2010 Phys. Rev. Lett. 105 133603

    [23]

    Yuan C H, Chen L Q, Jing J T, Ou Z Y, Zhang W P 2010 Phys. Rev. A 82 013817

    [24]

    Yuan C H, Chen L Q, Ou Z Y, Zhang W P 2013 Phys. Rev. A 87 053835

    [25]

    Raymer M G, Mostowski J 1981 Phys. Rev. A 24 1980

    [26]

    Wasilewski W, Raymer M G 2006 Phys. Rev. A 73 063816

    [27]

    Lu C P, Yuan C H, Zhang W P 2008 Acta Phys. Sin. 57 6976 (in Chinese) [鲁翠萍, 袁春华, 张卫平 2008 57 6976]

    [28]

    Chen L Q, Bian C L, Zhang G W, Ou Z Y, Zhang W P 2010 Phys. Rev. A 82 033832

    [29]

    Bian C L, Chen L Q, Zhang G W, Ou Z Y, Zhang W P 2012 Europhys. Lett. 97 34005

  • [1]

    Walls D F, Milburn G J 1994 Quantum Optics (Berlin: Springer-Verlag) p15

    [2]

    Loudon R, Knight P L 1987 J. Mod. Opt. 34 709

    [3]

    Giovannetti V, Lloyd S, Maccone L 2004 Science 306 1330

    [4]

    Zhang J X, Zhang T C, Xie C D, Peng K C 1999 Chin. Phys. 8 437

    [5]

    Koschorreck M, Napolitano M, Dubost B, Mitchell M W 2010 Phys. Rev. Lett. 105 053601

    [6]

    McCormick C F, Boyer V, Arimondo E, Lett P D 2007 Opt. Lett. 32 178

    [7]

    Caves M 1980 Phys. Rev. Lett. 45 75; Caves M 1981 Phys. Rev. D 23 1693

    [8]

    Xiao M, Wu L A, Kimble H J 1987 Phys. Rev. Lett. 59 278

    [9]

    Nabors C D, Shelby R M 1990 Phys. Rev. A 42 556

    [10]

    Mehmet M, Vahlbruch H, Lastzka N, Danzmann K, Schnabel R 2010 Phys. Rev. A 81 013814

    [11]

    Groß C 2012 Spin squeezing and Nonlinear Atom Interferometry with Bose-Einstein Condensates (Berlin: Springer-Verlag) p5

    [12]

    Ma J, Wang X G, Sun C P, Nori F 2011 Phys. Reports 509 89

    [13]

    Xiong J, Zhang Z M, Niu Z Q 2002 Acta Phys. Sin. 51 2245 (in Chinese) [熊锦, 张智明, 牛中奇 2002 51 2245]

    [14]

    Hu X M, Peng J S 1999 Chin. Phys. Lett. 16 648

    [15]

    L, Y J, Wu L A, Wu M J, Li S Q 1998 Chin. Phys. Lett. 15 109

    [16]

    He G Q, Zhu J, Zeng G H, Yi Z 2007 Acta Phys. Sin. 56 6427 (in Chinese) [何广强, 朱俊, 曾贵华, 易智 2007 56 6427]

    [17]

    Yurke B, McCall S L, Klauder J R 1986 Phys. Rev. A 33 4033

    [18]

    Li D, Yuan C H, Ou Z Y, Zhang W P 2013 arXiv: 1305.4769

    [19]

    Hammerer K, Sørensen A S, Polzik E S 2010 Rev. Mod. Phys. 82 1041

    [20]

    Xie R H, Liu D H, Xu G O 1996 Chin. Phys. Lett. 13 97

    [21]

    Chen L Q, Zhang G W, Yuan C H, Jing J T, Ou Z Y, Zhang W P 2009 Appl. Phys. Lett. 95 041115

    [22]

    Chen L Q, Zhang G W, Bian C L, Yuan C H, Ou Z Y, Zhang W P 2010 Phys. Rev. Lett. 105 133603

    [23]

    Yuan C H, Chen L Q, Jing J T, Ou Z Y, Zhang W P 2010 Phys. Rev. A 82 013817

    [24]

    Yuan C H, Chen L Q, Ou Z Y, Zhang W P 2013 Phys. Rev. A 87 053835

    [25]

    Raymer M G, Mostowski J 1981 Phys. Rev. A 24 1980

    [26]

    Wasilewski W, Raymer M G 2006 Phys. Rev. A 73 063816

    [27]

    Lu C P, Yuan C H, Zhang W P 2008 Acta Phys. Sin. 57 6976 (in Chinese) [鲁翠萍, 袁春华, 张卫平 2008 57 6976]

    [28]

    Chen L Q, Bian C L, Zhang G W, Ou Z Y, Zhang W P 2010 Phys. Rev. A 82 033832

    [29]

    Bian C L, Chen L Q, Zhang G W, Ou Z Y, Zhang W P 2012 Europhys. Lett. 97 34005

  • [1] 黄天龙, 吴永政, 倪明, 汪士, 叶永金. 量子噪声对Shor算法的影响.  , 2024, 73(5): 050301. doi: 10.7498/aps.73.20231414
    [2] 范洪义, 吴泽. 介观电路中量子纠缠的经典对应.  , 2022, 71(1): 010302. doi: 10.7498/aps.71.20210992
    [3] 王雅君, 王俊萍, 张文慧, 李瑞鑫, 田龙, 郑耀辉. 光学谐振腔的传输特性.  , 2021, 70(20): 204202. doi: 10.7498/aps.70.20210234
    [4] 范洪义, 吴泽. 介观电路中量子纠缠的经典对应.  , 2021, (): . doi: 10.7498/aps.70.20210992
    [5] 关佳, 顾翊晟, 朱成杰, 羊亚平. 利用相干制备的三能级原子介质实现低噪声弱光相位操控.  , 2017, 66(2): 024205. doi: 10.7498/aps.66.024205
    [6] 薛佳, 秦际良, 张玉驰, 李刚, 张鹏飞, 张天才, 彭堃墀. 低频标准真空涨落的测量.  , 2016, 65(4): 044211. doi: 10.7498/aps.65.044211
    [7] 杨光, 廉保旺, 聂敏. 多跳噪声量子纠缠信道特性及最佳中继协议.  , 2015, 64(24): 240304. doi: 10.7498/aps.64.240304
    [8] 黄建衡, 杜杨, 雷耀虎, 刘鑫, 郭金川, 牛憨笨. 硬X射线微分相衬成像的噪声特性分析.  , 2014, 63(16): 168702. doi: 10.7498/aps.63.168702
    [9] 卢道明. 三参数双模压缩粒子数态的量子特性.  , 2012, 61(21): 210302. doi: 10.7498/aps.61.210302
    [10] 肖海林, 欧阳缮, 聂在平. 多输入多输出量子密钥分发信道容量研究.  , 2009, 58(10): 6779-6785. doi: 10.7498/aps.58.6779
    [11] 易智, 何广强, 曾贵华. 基于双模压缩态的量子投票协议.  , 2009, 58(5): 3166-3172. doi: 10.7498/aps.58.3166
    [12] 鲁翠萍, 袁春华, 张卫平. 受激拉曼增益介质中的量子噪声特性研究.  , 2008, 57(11): 6976-6981. doi: 10.7498/aps.57.6976
    [13] 何广强, 易 智, 朱 俊, 曾贵华. 基于双模压缩态的量子密钥分发方案.  , 2007, 56(11): 6427-6433. doi: 10.7498/aps.56.6427
    [14] 张 茜, 李福利, 李宏荣. 基于双模压缩信道的双模高斯态量子隐形传态.  , 2006, 55(5): 2275-2280. doi: 10.7498/aps.55.2275
    [15] 厉江帆, 黄春佳, 姜宗福, 黄祖洪. 含时耦合谐振子系统的时间演化与双模压缩态.  , 2005, 54(2): 522-529. doi: 10.7498/aps.54.522
    [16] 宋同强. 利用双模压缩真空态实现量子态的远程传输.  , 2004, 53(10): 3358-3362. doi: 10.7498/aps.53.3358
    [17] 王成志, 方卯发. 双模压缩真空态与原子相互作用中的量子纠缠和退相干.  , 2002, 51(9): 1989-1995. doi: 10.7498/aps.51.1989
    [18] 万琳, 刘素梅, 刘三秋. T-C模型中虚光子过程对光场压缩效应的影响.  , 2002, 51(1): 84-90. doi: 10.7498/aps.51.84
    [19] 黄春佳, 周 明, 厉江帆, 方家元, 黄祖洪, 贺慧勇. 虚光场对双模压缩真空场中原子量子特性的影响.  , 2000, 49(8): 1490-1494. doi: 10.7498/aps.49.1490
    [20] 胡响明, 彭金生. 双模双光子关联发射激光的稳态特性及其量子噪声压缩特性.  , 1997, 46(2): 255-266. doi: 10.7498/aps.46.255
计量
  • 文章访问数:  6707
  • PDF下载量:  461
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-16
  • 修回日期:  2013-08-29
  • 刊出日期:  2014-01-05

/

返回文章
返回
Baidu
map