搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进的符号转移熵的心脑电信号耦合研究

吴莎 李锦 张明丽 王俊

引用本文:
Citation:

基于改进的符号转移熵的心脑电信号耦合研究

吴莎, 李锦, 张明丽, 王俊

Coupling analysis of electrocardiogram and electroencephalogram based on improved symbolic transfer entropy

Wu Sha, Li Jin, Zhang Ming-Li, Wang Jun
PDF
导出引用
  • 试图探究动力系统中的耦合关系一直以来都是国内外众多学者关注的热点,传统的时间序列符号化分析方法会使研究结果受序列非平稳性的严重影响,本文在原有转移熵的研究基础上,应用粗粒化提取,经过理论与实验的分析,发现心脑电信号耦合研究中的转移熵值在不同提取情况下对应不同的分布趋势,并选择效果最好的信号数据提取方法用在其后的应用分析中. 此外,对时间序列符号化方法提出改进,采用动态的自适应分割方法. 实验结果表明,无论清醒期还是睡眠期,改进的符号转移熵算法观测分析到的心脑电信号耦合作用更显著,能更好的捕捉到信号中的动态信息、系统动力学复杂性的改变,更利于医学临床实践应用中的检测,在分析非平稳的时间序列上具有更好的效果.
    Exploration of the coupling relationship in dynamical system has always been a hot topic of many scholars at home and abroad, the traditional symbolic dynamics analysis method may lead to the results from the serious effect of non-stationary time series. This paper employs coarse graining extraction based on research of original transfer entropy. Through theoretical and experimental analysis, we find that the results of transfer entropy have different distribution trend under different extraction conditions in the coupling analysis of electroencephalogram and electrocardiogram. We choose the best effect of signal data extraction method and apply it to the later application analysis. Furthermore, this paper proposes improvement on the method of time series symbolization, using dynamic adaptive segmentation method. The experimental results show that the whether waking period or sleeping stage, coupling between electroencephalogram and electrocardiogram is more significant when using improved symbolic transfer entropy algorithm. It is also better to capture the dynamic information of the signal and the change of complexity of system dynamics, which is more conductive to clinical testing in practical application and has a better effect on the analysis of non-stationary time series.
    • 基金项目: 国家自然科学基金(批准号:61271082,61201029,61102094)和江苏省自然科学基金(批准号:BK2011759,BK2011565)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61271082, 61201029, 61102094), and the Natural Science Foundation of Jiangsu Province (Grant Nos. BK2011759, BK2011565).
    [1]

    Fang X L, Jiang Z L 2007 Acta Phys. Sin. 56 7330 (in Chinese) [方小玲, 姜宗来 2007 56 7330]

    [2]

    Meng Q F, zhou W, Chen Y H, Peng Y H 2010 Acta Phys. Sin. 59 123 (in Chinese) [孟庆芳, 周卫东, 陈月辉, 彭玉华 2010 59 123]

    [3]

    Ma Q L, Bian C H, Wang J 2010 Acta Phys. Sin. 59 4480-4484 (in Chinese) [马千里, 卞春华, 王俊 2010 59 4480]

    [4]

    Wang J, Ma Q L 2008 Chin. Phys. B 17 4424

    [5]

    Hsu W Y 2012 Int. J. Neural Syst. 22 51

    [6]

    Petrantonakis P C, Hadjileontiadis L J 2012 IEEE Ton Signal Proc. 60 2604

    [7]

    Thatcher R W 2012 Dev. Neuropsychol. 37 476

    [8]

    Wang J, Yu Z F 2012 Chin. Phys. B 21 018702

    [9]

    Musselman M, Djurdjanovic D 2012 Expert Systems with Appl. 39 11413

    [10]

    Wang R F, Zhang J H, Zhang Y, Wang X Y 2012 Biomed. Signal Proc. and Control 7 490

    [11]

    Orhan U, Hekim M, Ozer M 2012 J. of Med. Syst. 36 2219

    [12]

    Acharya U R, Sree S V, Alvin A P C, Suri J S 2012 Expert Syst. Appl. 39 9072

    [13]

    Siuly S, Li Y 2012 IEEE T on Neur. Sys. and Reh. Eng. 20 526

    [14]

    Acharya U R, Molinari F, Sree S V, Chattopadhyay S, Ng K H, Suri J S 2012 Biomed. Signal Proc. and Control 7 401

    [15]

    Rosenblum M G, Pikovsky A S 2001 Phys. Rev. E 64 045202

    [16]

    Smirnov D A, Bezruchko B P 2003 Phys. Rev. E 68 046209

    [17]

    Smirnov D A, Bodrov M B, Velazquez J L P, Wennberg R A, Bezruchko B P 2005 Chaos 15 024102

    [18]

    Staniek M, Lehnertz K 2007 Phys. Rev. Lett. 99 204101

    [19]

    Shen W, Wang J 2010 Acta Phys. Sin. 60 118702 (in Chinese) [沈韡, 王俊 2010 60 118702]

    [20]

    Huang X L, Cui S Z, Ning X B 2009 Acta Phys. Sin. 58 8160 (in Chinese) [黄晓林, 崔胜忠, 宁新宝 2009 58 8160]

    [21]

    Li J, Liu D Z 2012 Acta Phys. Sin. 61 208701 (in Chinese) [李锦, 刘大钊 2012 61 208701]

  • [1]

    Fang X L, Jiang Z L 2007 Acta Phys. Sin. 56 7330 (in Chinese) [方小玲, 姜宗来 2007 56 7330]

    [2]

    Meng Q F, zhou W, Chen Y H, Peng Y H 2010 Acta Phys. Sin. 59 123 (in Chinese) [孟庆芳, 周卫东, 陈月辉, 彭玉华 2010 59 123]

    [3]

    Ma Q L, Bian C H, Wang J 2010 Acta Phys. Sin. 59 4480-4484 (in Chinese) [马千里, 卞春华, 王俊 2010 59 4480]

    [4]

    Wang J, Ma Q L 2008 Chin. Phys. B 17 4424

    [5]

    Hsu W Y 2012 Int. J. Neural Syst. 22 51

    [6]

    Petrantonakis P C, Hadjileontiadis L J 2012 IEEE Ton Signal Proc. 60 2604

    [7]

    Thatcher R W 2012 Dev. Neuropsychol. 37 476

    [8]

    Wang J, Yu Z F 2012 Chin. Phys. B 21 018702

    [9]

    Musselman M, Djurdjanovic D 2012 Expert Systems with Appl. 39 11413

    [10]

    Wang R F, Zhang J H, Zhang Y, Wang X Y 2012 Biomed. Signal Proc. and Control 7 490

    [11]

    Orhan U, Hekim M, Ozer M 2012 J. of Med. Syst. 36 2219

    [12]

    Acharya U R, Sree S V, Alvin A P C, Suri J S 2012 Expert Syst. Appl. 39 9072

    [13]

    Siuly S, Li Y 2012 IEEE T on Neur. Sys. and Reh. Eng. 20 526

    [14]

    Acharya U R, Molinari F, Sree S V, Chattopadhyay S, Ng K H, Suri J S 2012 Biomed. Signal Proc. and Control 7 401

    [15]

    Rosenblum M G, Pikovsky A S 2001 Phys. Rev. E 64 045202

    [16]

    Smirnov D A, Bezruchko B P 2003 Phys. Rev. E 68 046209

    [17]

    Smirnov D A, Bodrov M B, Velazquez J L P, Wennberg R A, Bezruchko B P 2005 Chaos 15 024102

    [18]

    Staniek M, Lehnertz K 2007 Phys. Rev. Lett. 99 204101

    [19]

    Shen W, Wang J 2010 Acta Phys. Sin. 60 118702 (in Chinese) [沈韡, 王俊 2010 60 118702]

    [20]

    Huang X L, Cui S Z, Ning X B 2009 Acta Phys. Sin. 58 8160 (in Chinese) [黄晓林, 崔胜忠, 宁新宝 2009 58 8160]

    [21]

    Li J, Liu D Z 2012 Acta Phys. Sin. 61 208701 (in Chinese) [李锦, 刘大钊 2012 61 208701]

  • [1] 杨青林, 王立夫, 李欢, 余牧舟. 基于相对距离的复杂网络谱粗粒化方法.  , 2019, 68(10): 100501. doi: 10.7498/aps.68.20181848
    [2] 周建, 贾贞, 李科赞. 复杂网络谱粗粒化方法的改进算法.  , 2017, 66(6): 060502. doi: 10.7498/aps.66.060502
    [3] 谢平, 杨芳梅, 李欣欣, 杨勇, 陈晓玲, 张利泰. 基于变分模态分解-传递熵的脑肌电信号耦合分析.  , 2016, 65(11): 118701. doi: 10.7498/aps.65.118701
    [4] 张涛, 陈万忠, 李明阳. 基于AdaBoost算法的癫痫脑电信号识别.  , 2015, 64(12): 128701. doi: 10.7498/aps.64.128701
    [5] 王莹, 侯凤贞, 戴加飞, 刘新峰, 李锦, 王俊. 基于自适应模板法的脑电信号转移熵分析.  , 2015, 64(8): 088701. doi: 10.7498/aps.64.088701
    [6] 谢平, 杨芳梅, 陈晓玲, 杜义浩, 吴晓光. 基于多尺度传递熵的脑肌电信号耦合分析.  , 2015, 64(24): 248702. doi: 10.7498/aps.64.248702
    [7] 李文飞, 张建, 王骏, 王炜. 生物大分子多尺度理论和计算方法.  , 2015, 64(9): 098701. doi: 10.7498/aps.64.098701
    [8] 黄晓林, 霍铖宇, 司峻峰, 刘红星. 等概率符号化样本熵应用于脑电分析.  , 2014, 63(10): 100503. doi: 10.7498/aps.63.100503
    [9] 刘大钊, 王俊, 李锦, 李瑜, 徐文敏, 赵筱. 颠倒睡眠状态调制心率变异性信号的功率谱和基本尺度熵分析.  , 2014, 63(19): 198703. doi: 10.7498/aps.63.198703
    [10] 王凯明, 钟宁, 周海燕. 基于改进功率谱熵的抑郁症脑电信号活跃性研究.  , 2014, 63(17): 178701. doi: 10.7498/aps.63.178701
    [11] 姚文坡, 刘铁兵, 戴加飞, 王俊. 脑电信号的多尺度排列熵分析.  , 2014, 63(7): 078704. doi: 10.7498/aps.63.078704
    [12] 刘铁兵, 姚文坡, 宁新宝, 倪黄晶, 王俊. 功能磁共振成像的基本尺度熵分析.  , 2013, 62(21): 218704. doi: 10.7498/aps.62.218704
    [13] 张梅, 崔超, 马千里, 干宗良, 王俊. 基于符号化部分互信息熵的多参数生物电信号的耦合分析.  , 2013, 62(6): 068704. doi: 10.7498/aps.62.068704
    [14] 张梅, 王俊. 基于改进的符号相对熵的脑电信号时间不可逆性研究.  , 2013, 62(3): 038701. doi: 10.7498/aps.62.038701
    [15] 高湘昀, 安海忠, 方伟. 基于复杂网络的时间序列双变量相关性波动研究.  , 2012, 61(9): 098902. doi: 10.7498/aps.61.098902
    [16] 严碧歌, 赵婷婷. 应用多尺度化的基本尺度熵分析心率变异性.  , 2011, 60(7): 078701. doi: 10.7498/aps.60.078701
    [17] 沈韡, 王俊. 基于符号相对熵的心电信号时间不可逆性分析.  , 2011, 60(11): 118702. doi: 10.7498/aps.60.118702
    [18] 黄晓林, 崔胜忠, 宁新宝, 卞春华. 心率变异性基本尺度熵的多尺度化研究.  , 2009, 58(12): 8160-8165. doi: 10.7498/aps.58.8160
    [19] 封国林, 侯 威, 董文杰. 基于条件熵长江三角洲温度的非线性动力学特征分析.  , 2006, 55(2): 962-968. doi: 10.7498/aps.55.962
    [20] 王焕友, 曹晓平, 蒋亦民, 刘 佑. 静止颗粒体的应变与弹性.  , 2005, 54(6): 2784-2790. doi: 10.7498/aps.54.2784
计量
  • 文章访问数:  7366
  • PDF下载量:  655
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-20
  • 修回日期:  2013-08-19
  • 刊出日期:  2013-12-05

/

返回文章
返回
Baidu
map