-
以H2S气体作为硫源、固态蒸发硒蒸气作为硒源对电沉积Cu-In-Ga金属预制层进行硒硫化处理. 通过电沉积Cu-In-Ga金属预制层在不同衬底温度下硒化、硫化和硒硫化的对比实验,发现CuInS2相和CuIn(S,Se)2相优先生成,抑制了CuInSe2相的生成,促使InSe相薄膜向内部扩散,减弱了薄膜两相分离现象. 采用先硒化后硒硫化处理工艺优化了Cu(In,Ga)(S,Se)2薄膜的制备工艺,在250 ℃预硒化得到了开路电压为570 mV的太阳电池,在更高的预硒化温度得到了较大短路电流的太阳电池,最终优化得到了效率达到10.4%的电池器件.
-
关键词:
- 电化学沉积 /
- Cu-In-Ga金属预制层 /
- 硒硫化处理 /
- Cu(In,Ga)(S,Se)2薄膜
In this paper, the electrodeposited Cu-In-Ga metallic precursors have been sulpho-selenized by using H2S gas as the sulfur source and Se vapor as selenium source. Through the comparative experiments of selenization, sulfization and sulpho-selenization of the Cu-In-Ga metallic precursor, it has been found that the formations of CuInS2 phase and CuIn(S,Se)2 phase have priority over and restrain the formation of CuInSe2, so that the InSe phase diffuses into the film and weakens the phenomenon of separation into two phases in the film. Then the process of first selenization and sulfization next was made to optimize the preparation of Cu(In,Ga)(S,Se)2 film. At 250 ℃, the pre-selenization temperature, the solar cells with 570 mV open circuit voltage are prepared, while at a higher pre-selenization temperature, the solar cells with a large short-circuit current are prepared. Finally the optimized solar cell with 10.4% efficiency is obtained.-
Keywords:
- electrodepostion /
- Cu-In-Ga metallic precursor /
- sulpho-selenization /
- Cu(In,Ga)(S,Se)2 thin film
[1] Lundberg O Lu J, Rockett A, Edoff M, Stolt L 2003 Journal of Physics and Chemistry of Solids 64 1499
[2] Lai Y Q, Kuang S S, Liu F Y, Zhang Z A, Liu J, Li J, Liu Y X 2010 Acta Phys. Sin. 59 1196 (in Chinese) [赖延清, 匡三双, 刘芳洋, 张治安, 刘军, 李劼, 刘业翔 2010 59 1196]
[3] Nakada T, Ohbo H, Watanabe T, Nakazawa H, Matsui M, Kunioka A 1997 Solar Energy Materials and Solar Cells 49 285
[4] Kim K, Park H, Kim W K, Hanket G M, Shafarman W N 2012 Proc. 38th IEEE PVSC, Austin Texas, June 3–8, 2012
[5] Kim K, Hanket G M, Huynh T, Shafarman W N 2012 Journal of Applied Physics 111 083710
[6] Kim K, Kimberly E L, Damiani A, Hanket G M, Shafarman W N 2012 Proc. 38th IEEE PVSC, Austin Texas, June 3–8, 2012
[7] Kim K Park H Kim W K Hanket G M Shafarman W N 2013 IEEE Journal of Photovoltaics 3 446
[8] Basol B M, Halani A, Leidholm C, Norsworthy G, Kapur V K, Swartzlander A, Matson R 2000 Prog. Photovolt. Res. Appl. 8 227
[9] Nagoya Y, Kushiya K, Tachiyuki M, Yamase O 2001 Solar Energy Materials & Solar Cells 67 247
[10] Li W, Zhao Y M, Liu X J, Ao J P, Sun Y 2011 Chin. Phys. B 20 068102
[11] Zhang C, Ao J P, Jiang T, Sun G Z, Zhou Z Q, Sun Y 2013 Acta Phys. Sin. 62 078801 (in Chinese) [张超, 敖建平, 姜韬, 孙国忠, 周志强, 孙云 2013 62 078801]
[12] Kim W K 2006 Ph. D. Dissertation (US: University of Florida)
[13] Kim W K, Payzant E A, Kim S, Speakman S A, Crisalle O D, Anderson T J 2008 Journal of Crystal Growth 310 2987
[14] Hanket G M, Shafarman W N, McCandless B E, Birkmrie R W 2007 Journal of Applied Physics 102 074922
[15] Roine A.HSC Chemistry v5.0. Outokumpu Research 2002 Pori Finland
[16] Hölzing A, Schurr R, Yoo H, Wibowo R A, Lechner R, Palm J, Jost S, Hock R 2012 Thin Solid Films (in press)
[17] Weber A, Kötschau I, Schock H W 2007 Thin Solid Films 515 6252
[18] Hölzing A, Schurr R, Jost S, Palm J, Deseler K, Wellmann P, Hock R 2011 Thin Solid Films 519 7197
[19] Mönig H, Fischer C H, Caballero R, Kaufmann C A, Allsop N, Gorgoi M, Klenk R, Schock H W, Lehmann S, Lux-Steiner M C, Lauermann I 2009 Acta Materialia 57 3645
[20] Han A J, Zhang Y, Liu W, Li B Y, Sun Y 2012 Applied Surface Science 258 9747
[21] Tuttle J R, Contreras M, Bode M H, Niles D, Albin D S, Matson R, Gabor A M, Tennant A, Duda A, Noufi R 1995 J. Appl. Phys. 77 153
-
[1] Lundberg O Lu J, Rockett A, Edoff M, Stolt L 2003 Journal of Physics and Chemistry of Solids 64 1499
[2] Lai Y Q, Kuang S S, Liu F Y, Zhang Z A, Liu J, Li J, Liu Y X 2010 Acta Phys. Sin. 59 1196 (in Chinese) [赖延清, 匡三双, 刘芳洋, 张治安, 刘军, 李劼, 刘业翔 2010 59 1196]
[3] Nakada T, Ohbo H, Watanabe T, Nakazawa H, Matsui M, Kunioka A 1997 Solar Energy Materials and Solar Cells 49 285
[4] Kim K, Park H, Kim W K, Hanket G M, Shafarman W N 2012 Proc. 38th IEEE PVSC, Austin Texas, June 3–8, 2012
[5] Kim K, Hanket G M, Huynh T, Shafarman W N 2012 Journal of Applied Physics 111 083710
[6] Kim K, Kimberly E L, Damiani A, Hanket G M, Shafarman W N 2012 Proc. 38th IEEE PVSC, Austin Texas, June 3–8, 2012
[7] Kim K Park H Kim W K Hanket G M Shafarman W N 2013 IEEE Journal of Photovoltaics 3 446
[8] Basol B M, Halani A, Leidholm C, Norsworthy G, Kapur V K, Swartzlander A, Matson R 2000 Prog. Photovolt. Res. Appl. 8 227
[9] Nagoya Y, Kushiya K, Tachiyuki M, Yamase O 2001 Solar Energy Materials & Solar Cells 67 247
[10] Li W, Zhao Y M, Liu X J, Ao J P, Sun Y 2011 Chin. Phys. B 20 068102
[11] Zhang C, Ao J P, Jiang T, Sun G Z, Zhou Z Q, Sun Y 2013 Acta Phys. Sin. 62 078801 (in Chinese) [张超, 敖建平, 姜韬, 孙国忠, 周志强, 孙云 2013 62 078801]
[12] Kim W K 2006 Ph. D. Dissertation (US: University of Florida)
[13] Kim W K, Payzant E A, Kim S, Speakman S A, Crisalle O D, Anderson T J 2008 Journal of Crystal Growth 310 2987
[14] Hanket G M, Shafarman W N, McCandless B E, Birkmrie R W 2007 Journal of Applied Physics 102 074922
[15] Roine A.HSC Chemistry v5.0. Outokumpu Research 2002 Pori Finland
[16] Hölzing A, Schurr R, Yoo H, Wibowo R A, Lechner R, Palm J, Jost S, Hock R 2012 Thin Solid Films (in press)
[17] Weber A, Kötschau I, Schock H W 2007 Thin Solid Films 515 6252
[18] Hölzing A, Schurr R, Jost S, Palm J, Deseler K, Wellmann P, Hock R 2011 Thin Solid Films 519 7197
[19] Mönig H, Fischer C H, Caballero R, Kaufmann C A, Allsop N, Gorgoi M, Klenk R, Schock H W, Lehmann S, Lux-Steiner M C, Lauermann I 2009 Acta Materialia 57 3645
[20] Han A J, Zhang Y, Liu W, Li B Y, Sun Y 2012 Applied Surface Science 258 9747
[21] Tuttle J R, Contreras M, Bode M H, Niles D, Albin D S, Matson R, Gabor A M, Tennant A, Duda A, Noufi R 1995 J. Appl. Phys. 77 153
计量
- 文章访问数: 5794
- PDF下载量: 476
- 被引次数: 0