搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外电场对InGaAsP/InP量子阱内激子结合能的影响

王文娟 王海龙 龚谦 宋志棠 汪辉 封松林

引用本文:
Citation:

外电场对InGaAsP/InP量子阱内激子结合能的影响

王文娟, 王海龙, 龚谦, 宋志棠, 汪辉, 封松林

External electric field effect on exciton binding energy in InGaAsP/InP quantum wells

Wang Wen-Juan, Wang Hai-Long, Gong Qian, Song Zhi-Tang, Wang Hui, Feng Song-Lin
PDF
导出引用
  • 在有效质量近似下采用变分法计算了InGaAsP/InP量子阱内不同In组分下的激子结合能,分析了结合能随阱宽和In组分的变化情况,并且讨论了外加电场对激子结合能的影响. 结果表明:激子结合能是阱宽的一个非单调函数,随阱宽的变化呈现先增加后减小的趋势;随着In组分增大,激子结合能达到最大值的阱宽相应变小,这与材料的带隙改变有关;在一定范围内电场的存在对激子结合能的影响很小,但电场强度较大时会破坏激子效应.
    Exciton binding energies in InGaAsP/InP quantum well with different contents of In are calculated through variational method in the effective mass approximation. The variation of exciton binding energy as a function of well width, In content, and applied external electric field is studied. It is shown that the exciton binding energy is a non-monotonic function of well width. It increases first until reaching a maximum, and then decreases as the well width increases farther. In addition, with the increase of In content, the well width should increase to reach the maximum value of exciton binding energy. It is also found that the external electric field has little effect on binding energy, but when the electric field is large enough, it will destroy the excitonic effect. These results may provide some theoretical basis for the design and control of InGaAsP/InP optical devices.
    • 基金项目: 国家自然科学基金(批准号:60976015,61176065)、山东省自然科学基金(批准号:ZR2010FM023)和信息功能材料国家重点实验开放课题资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 60976015, 61176065), the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2010FM023), and the Open Project of State Key Laboratory of Functional Materials for Informatics.
    [1]

    Turkowski V, Leonardo A, Ullrich C A 2009 Phys. Rev. B 79 233201

    [2]

    Gil B, Felbacq D, Chichibu S F 2012 Phys. Rev. B 85 075205

    [3]

    Zhang H, Liu L, Liu J J 2007 Acta Phys. Sin. 56 0487 (in Chinese) [张红, 刘磊, 刘建军 2007 56 0487]

    [4]

    Ha S H, Ban S L 2008 J. Phys.: Condens. Matter 20 085218

    [5]

    Kuo Y H, Li Y S 2009 Phys. Rev. B 79 245328

    [6]

    High A A, Leonard J R, Hammack A T, Fogler M M, Butov L V, Kavokin A V, Campman K L, Gossard A C 2012 Nature 483 584

    [7]

    Schaller R D, Klimov V I, 2004 Phys. Rev. Lett. 92 186601

    [8]

    Albrecht K F, Wang H B, Mhlbacher L, Thoss M, Komnik A 2012 Phys. Rev. B 86 081412

    [9]

    Wang Z J, Pedrosa H, Krauss T, Rothberg L 2006 Phys. Rev. Lett. 96 047403

    [10]

    You H L, Zhang C F 2009 Chin. Phys. B 18 0349

    [11]

    Chen J, Perebeinos V, Freitag M, Tsang J, Fu Q, Liu J, Avouris P 2005 Science 310 1171

    [12]

    Hu Z H, Huang D X 2003 Acta Phys. Sin. 52 1488 (in Chinese) [胡振华, 黄德修 2003 52 1488]

    [13]

    Belhadj T, Simon C M, Amand T, Renucci P, Chatel B, Krebs O, Lemaitre A, Voisin P, Marie X, Urbaszek B 2009 Phys. Rev. Lett. 103 086601

    [14]

    Li W S, Sun B Q 2013 Acta Phys. Sin. 62 047801 (in Chinese) [李文生, 孙宝权 2013 62 047801]

    [15]

    Klimov V I, Ivanov S A, Nanda J, Achermann M, Bezel I, McGuire J A, Piryatinski A 2007 Nature 447 441

    [16]

    Dvorak M, Wei S H, Wu Z G 2013 Phys. Rev. Lett. 110 016402

    [17]

    Shen M, Bai Y K, An X T, Liu J J 2013 Chin. Phys. B 22 047101

    [18]

    Tudury H A P, Nakaema M K K, Iikawa F, Brum J A, Ribeiro E, Carvalho W, Jr, Bernussi A A, Gobbi A L 2001 Phys. Rev. B 64 153301

    [19]

    Kong D H, Zhu H L, Liang S, Qiu J F, Zhao L J 2012 Chin. Phys. Lett. 29 024201

    [20]

    Yin X, Wang H L, Gong Q, Feng S L 2013 Chinese J. Quantum Electron 30 236 (in Chinese) [尹新, 王海龙, 龚谦, 封松林 2013 量子电子学报 30 236]

    [21]

    Wang H L, Jiang L M, Gong Q, Feng S L 2010 Physica B 405 3818

    [22]

    Dacal L C O, Brum J A 2002 Phys. Rev. B 65 115324

    [23]

    Wu H T, Wang H L, Jiang L M, Gong Q, Feng S L 2009 Physica B 404 122

    [24]

    Sivalertporn K, Mouchliadis L, Ivanov A L, Philp R, Muljarov E A 2012 Phys. Rev. B 85 045207

    [25]

    Jiang L M, Wang H L, Wu H T, Gong Q, Feng S L 2008 Chin. Phys. Lett. 25 3017

    [26]

    Harrison P, Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructure, 2nd ed (John Wiley & Sons, New York, 2005)

    [27]

    Li E H 2000 Physica E 5 215

    [28]

    Priester C, Allan G, Lannoo M 1984 Phys. Rev. B 30 7302

    [29]

    Haines M J L S, Ahmed N, Adams S J A, Mitchell K, Agool I R, Pidgeon C R, Cavenett B C, O’Reilly E P, Ghiti A, Emeny M T 1991 Phys. Rev. B 43 11944

  • [1]

    Turkowski V, Leonardo A, Ullrich C A 2009 Phys. Rev. B 79 233201

    [2]

    Gil B, Felbacq D, Chichibu S F 2012 Phys. Rev. B 85 075205

    [3]

    Zhang H, Liu L, Liu J J 2007 Acta Phys. Sin. 56 0487 (in Chinese) [张红, 刘磊, 刘建军 2007 56 0487]

    [4]

    Ha S H, Ban S L 2008 J. Phys.: Condens. Matter 20 085218

    [5]

    Kuo Y H, Li Y S 2009 Phys. Rev. B 79 245328

    [6]

    High A A, Leonard J R, Hammack A T, Fogler M M, Butov L V, Kavokin A V, Campman K L, Gossard A C 2012 Nature 483 584

    [7]

    Schaller R D, Klimov V I, 2004 Phys. Rev. Lett. 92 186601

    [8]

    Albrecht K F, Wang H B, Mhlbacher L, Thoss M, Komnik A 2012 Phys. Rev. B 86 081412

    [9]

    Wang Z J, Pedrosa H, Krauss T, Rothberg L 2006 Phys. Rev. Lett. 96 047403

    [10]

    You H L, Zhang C F 2009 Chin. Phys. B 18 0349

    [11]

    Chen J, Perebeinos V, Freitag M, Tsang J, Fu Q, Liu J, Avouris P 2005 Science 310 1171

    [12]

    Hu Z H, Huang D X 2003 Acta Phys. Sin. 52 1488 (in Chinese) [胡振华, 黄德修 2003 52 1488]

    [13]

    Belhadj T, Simon C M, Amand T, Renucci P, Chatel B, Krebs O, Lemaitre A, Voisin P, Marie X, Urbaszek B 2009 Phys. Rev. Lett. 103 086601

    [14]

    Li W S, Sun B Q 2013 Acta Phys. Sin. 62 047801 (in Chinese) [李文生, 孙宝权 2013 62 047801]

    [15]

    Klimov V I, Ivanov S A, Nanda J, Achermann M, Bezel I, McGuire J A, Piryatinski A 2007 Nature 447 441

    [16]

    Dvorak M, Wei S H, Wu Z G 2013 Phys. Rev. Lett. 110 016402

    [17]

    Shen M, Bai Y K, An X T, Liu J J 2013 Chin. Phys. B 22 047101

    [18]

    Tudury H A P, Nakaema M K K, Iikawa F, Brum J A, Ribeiro E, Carvalho W, Jr, Bernussi A A, Gobbi A L 2001 Phys. Rev. B 64 153301

    [19]

    Kong D H, Zhu H L, Liang S, Qiu J F, Zhao L J 2012 Chin. Phys. Lett. 29 024201

    [20]

    Yin X, Wang H L, Gong Q, Feng S L 2013 Chinese J. Quantum Electron 30 236 (in Chinese) [尹新, 王海龙, 龚谦, 封松林 2013 量子电子学报 30 236]

    [21]

    Wang H L, Jiang L M, Gong Q, Feng S L 2010 Physica B 405 3818

    [22]

    Dacal L C O, Brum J A 2002 Phys. Rev. B 65 115324

    [23]

    Wu H T, Wang H L, Jiang L M, Gong Q, Feng S L 2009 Physica B 404 122

    [24]

    Sivalertporn K, Mouchliadis L, Ivanov A L, Philp R, Muljarov E A 2012 Phys. Rev. B 85 045207

    [25]

    Jiang L M, Wang H L, Wu H T, Gong Q, Feng S L 2008 Chin. Phys. Lett. 25 3017

    [26]

    Harrison P, Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructure, 2nd ed (John Wiley & Sons, New York, 2005)

    [27]

    Li E H 2000 Physica E 5 215

    [28]

    Priester C, Allan G, Lannoo M 1984 Phys. Rev. B 30 7302

    [29]

    Haines M J L S, Ahmed N, Adams S J A, Mitchell K, Agool I R, Pidgeon C R, Cavenett B C, O’Reilly E P, Ghiti A, Emeny M T 1991 Phys. Rev. B 43 11944

  • [1] 张明媚, 郭亚涛, 付旭日, 李梦蕾, 任宝藏, 郑军, 袁瑞玚. 铁磁电极单层二硫化钼纳米带量子结构中的自旋开关效应和巨磁阻.  , 2023, 72(15): 157202. doi: 10.7498/aps.72.20230483
    [2] 段秀铭, 易志军. 介电环境屏蔽效应对二维InX (X = Se, Te)激子结合能调控机制的理论研究.  , 2023, 72(14): 147102. doi: 10.7498/aps.72.20230528
    [3] 闫晓宏, 牛亦杰, 徐红星, 魏红. 单个等离激元纳米颗粒和纳米间隙结构与量子发光体的强耦合.  , 2022, 71(6): 067301. doi: 10.7498/aps.71.20211900
    [4] 王文静, 孟瑞璇, 李元, 高琨. 共轭聚合物中受激吸收与受激辐射的量子动力学研究.  , 2014, 63(19): 197901. doi: 10.7498/aps.63.197901
    [5] 何月娣, 徐征, 赵谡玲, 刘志民, 高松, 徐叙瑢. 混合量子点器件电致发光的能量转移研究.  , 2014, 63(17): 177301. doi: 10.7498/aps.63.177301
    [6] 武娜, 杨皎, 肖芬, 蔡灵仓, 田春玲. 固氪物态方程的关联量子化学计算.  , 2014, 63(14): 146102. doi: 10.7498/aps.63.146102
    [7] 赵凤岐, 张敏, 李志强, 姬延明. 纤锌矿In0.19Ga0.81N/GaN量子阱中光学声子和内建电场对束缚极化子结合能的影响.  , 2014, 63(17): 177101. doi: 10.7498/aps.63.177101
    [8] 李文生, 孙宝权. 电场调谐InAs量子点荷电激子光学跃迁.  , 2013, 62(4): 047801. doi: 10.7498/aps.62.047801
    [9] 孟振华, 李俊斌, 郭永权, 王义. 稀土元素的价电子结构和熔点、结合能的关联性.  , 2012, 61(10): 107101. doi: 10.7498/aps.61.107101
    [10] 王艳文, 吴花蕊. 闪锌矿GaN/AlGaN量子点中激子态及光学性质的研究.  , 2012, 61(10): 106102. doi: 10.7498/aps.61.106102
    [11] 沈曼, 张亮, 刘建军. 磁场和量子点尺寸对激子性质的影响.  , 2012, 61(21): 217103. doi: 10.7498/aps.61.217103
    [12] 程萍, 高峰, 陈向东, 杨继平. 偏置电场对聚对苯乙烯激发态弛豫特性的影响.  , 2010, 59(4): 2831-2835. doi: 10.7498/aps.59.2831
    [13] 金 华, 刘 舒, 张振中, 张立功, 郑著宏, 申德振. (CdZnTe, ZnSeTe)/ZnTe复合量子阱中激子隧穿过程.  , 2008, 57(10): 6627-6630. doi: 10.7498/aps.57.6627
    [14] 熊 稳, 赵 铧. ZnO薄膜的激子能量和束缚能的计算.  , 2007, 56(2): 1061-1065. doi: 10.7498/aps.56.1061
    [15] 郑瑞伦. 圆柱状量子点量子导线复合系统的激子能量和电子概率分布.  , 2007, 56(8): 4901-4907. doi: 10.7498/aps.56.4901
    [16] 张 红, 刘 磊, 刘建军. 对称GaAs/Al0.3Ga0.7As双量子阱中激子的束缚能.  , 2007, 56(1): 487-490. doi: 10.7498/aps.56.487
    [17] 王防震, 陈张海, 柳 毅, 黄少华, 柏利慧, 沈学础. CdSe/ZnSe超薄层中两类量子岛(点)之间的激子转移和它们的光学性质研究.  , 2005, 54(1): 434-438. doi: 10.7498/aps.54.434
    [18] 董庆瑞, 牛智川. 垂直耦合自组织InAs双量子点中激子能的计算.  , 2005, 54(4): 1794-1798. doi: 10.7498/aps.54.1794
    [19] 金 华, 张立功, 郑著宏, 孔祥贵, 安立楠, 申德振. ZnCdSe量子阱/CdSe量子点耦合结构中的激子隧穿过程.  , 2004, 53(9): 3211-3214. doi: 10.7498/aps.53.3211
    [20] 邵 军. 谱导数法在光谱研究GaInAs/InP和GaInP/AlGaInP多量子阱中的应用.  , 2003, 52(10): 2534-2540. doi: 10.7498/aps.52.2534
计量
  • 文章访问数:  7578
  • PDF下载量:  1375
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-25
  • 修回日期:  2013-09-02
  • 刊出日期:  2013-12-05

/

返回文章
返回
Baidu
map