搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单载流子传输的双异质结光敏晶体管探测器的研究

霍文娟 谢红云 梁松 张万荣 江之韵 陈翔 鲁东

引用本文:
Citation:

单载流子传输的双异质结光敏晶体管探测器的研究

霍文娟, 谢红云, 梁松, 张万荣, 江之韵, 陈翔, 鲁东

Uni-traveling-carrier double heterojunction phototransistor photodetector

Huo Wen-Juan, Xie Hong-Yun, Liang Song, Zhang Wan-Rong, Jiang Zhi-Yun, Chen Xiang, Lu Dong
PDF
导出引用
  • 基于器件仿真器Atlas, 建立了InP/InGaAsP单向载流子传输的双异质结光敏晶体管(UTC-DHPT)的二维模型, 分析讨论了器件性能与外延结构参数的关系. 设计出同时具有高响应度(≥17.93 A/W)和高特征频率(≥121.68 GHz)的UTC-DHPT, 缓解了传统的异质结光敏晶体管光电探测器中探测效率和工作速度的矛盾.
    An InP/InGaAsP uni-traveling-carrier double heterojunction phototransistor (UTC-DHPT) photodetector is simulated and analyzed in a two-dimensional (2D) model utilizing a numerical device simulator (Atlas). The effects of device structure parameters on operational performance, such as responsivity and characteristic frequency, are studied in detail. Simulation results indicate that the UTC-DHPT can ease the contradiction between detection efficiency and working speed, which exists in traditional heterojun-ction phototransistor and achieve both high responsivity (≥17.93 A/W) and high characteristic frequency (≥121.68 GHz) simultaneously.
    • 基金项目: 国家自然科学基金(批准号: 61006044, 60776051, 61006059, 61274071, 61090392)、国家高技术研究发展计划(批准号: 2013AA014502, 2011AA010303)、北京市自然科学基金(批准号: 4122014, 4082007)和北京市教委科技发展计划(批准号: KM200910005001, KM200710005015)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61006044, 60776051, 61006059, 61274071, 61090392), the National High Technology Research and Development Program of China (Grant Nos. 2013AA014502, 2011AA010303), the Beijing Municipal Natural Science Foundation, China (Grant Nos. 4122014, 4082007), and the Beijing Municipal Education Committee, China (Grant Nos. KM200910005001, KM20070005015).
    [1]

    Zhang L Z, Zuo Y H, Cao Q, Xue C L, Cheng B W, Zhang W C, Cao X L, Wang Q M 2012 Acta Phys. Sin. 61 138501 (in Chinese) [张岭梓, 左玉华, 曹权, 薛春来, 成步文, 张万昌, 曹学蕾, 王启明 2012 61 138501]

    [2]

    Khan H A, Rezazadeh A A, Sonhaib S, Tauqeer T 2012 IEEE J. Quantum Elect. 48 576

    [3]

    Kamitsuna H, Matsuoka Y, Yamahata S, Shigekawa N 2001 IEEE Trans. Microw. Theory 49 1921

    [4]

    Kamitsuna H, Matsuoka Y, Yamahata S, Shigekawa N 2000 European Microwave Conference (EUMC) Paris, France, October, 2000 p1

    [5]

    Chandrasekhar S, Lunardi L M, Gnauck A H, Hamm R A, Qua G J 1993 IEEE Photonic. Tech. L. 5 1316

    [6]

    Kamitsuna H, Ishii K, Shibata T, Kurishima K, Ida M 2004 IEEE J. Sel. Top. Quant. 10 673

    [7]

    Leven A, Houtsma V, Kopf R, Baeyens Y, Chen Y K 2004 Electron. Lett. 40 833

    [8]

    Ishibashi T, Furuta T, Fushimi H, Kodama S, Ito H, Nagatsuma T, Shimizu N, Miyamoto Y 2000 IEICE Trans. Electron. 83 938

    [9]

    Ito H, Kodama S, Muramoto Y 2004 IEEE J. Sel. Top. Quantum Electron. 10 709

    [10]

    Chtioui M, Enard A, Carpentier D, Rousseau B, Lelarge F, Pommereau F, Achouche M 2008 IEEE Photon. Technol. Lett. 20 202

    [11]

    Zuo Y H, Cao Q, Zhang Y, Zhang L Z, Guo J C, Xue C L, Cheng B W, Wang Q M 2011 Chin. Phys. B 20 018504

    [12]

    Zhang Y X, Liao Z Y Zhao L J, Pan J Q, Zhu H L, Wang W 2010 Chin. Phys. B 19 074216

    [13]

    Shi T, Xiong B, Sun C Z, Luo Y 2013 IEEE Photonic. Tech. L. 25 136

    [14]

    Rouvalis E, Chtioui M, van Dijk F, Lelarge F, Fice M J, Renaud C C, Carpintero G A, Seeds A J 2012 Opt. Express 20 20090

    [15]

    Ito H, Yoshimatsuc T, Yamamotoa H, Ishibashi T 2013 Proceedings of SPIE Volume 8716 Baltimore, Maryland, USA, April 29–30, 2013 p871602-1

    [16]

    Wang L S, Zhao L J, Pan J Q, Zhang W, Wang H, Zhu H L, Wang W 2009 Opto-Electron. Rev. 17 242

    [17]

    Schiellein J, Rosales M, Polleux J L, Algani C, Merlet T, Riet M, Godin J 2011 Proceedings of the 41st European Microwave Conference Manchester, UK, October 10–13, 2011 p949

    [18]

    Ishibashi T, Kodama S, Shimizu N, Furuta T 1997 J. Appl. Phys. 36 6263

    [19]

    Matsuoka Y, Sano E 1995 Solid-State Electron. 38 1703

    [20]

    Matsuoka Y, Yamahata S, Kurishima K, Ito H 1996 Jpn. J. Appl. Phys 35 5646

    [21]

    Liu W 1998 Handbook of Ⅲ-V Heterojunction Bipolar Transistors (1st Ed.) (Malden: Wiley-Interscience) p81

    [22]

    Wang L S 2009 Ph. D. Dissertation (Beijing: Institute of Semiconductors, Chinese Academy of Science) (in Chinese) [王列松 2009 博士学位论文(北京: 中国科学院半导体研究所)]

    [23]

    Srivastava S, Roenker K P 2004 Solid-State Electro. 48 461

  • [1]

    Zhang L Z, Zuo Y H, Cao Q, Xue C L, Cheng B W, Zhang W C, Cao X L, Wang Q M 2012 Acta Phys. Sin. 61 138501 (in Chinese) [张岭梓, 左玉华, 曹权, 薛春来, 成步文, 张万昌, 曹学蕾, 王启明 2012 61 138501]

    [2]

    Khan H A, Rezazadeh A A, Sonhaib S, Tauqeer T 2012 IEEE J. Quantum Elect. 48 576

    [3]

    Kamitsuna H, Matsuoka Y, Yamahata S, Shigekawa N 2001 IEEE Trans. Microw. Theory 49 1921

    [4]

    Kamitsuna H, Matsuoka Y, Yamahata S, Shigekawa N 2000 European Microwave Conference (EUMC) Paris, France, October, 2000 p1

    [5]

    Chandrasekhar S, Lunardi L M, Gnauck A H, Hamm R A, Qua G J 1993 IEEE Photonic. Tech. L. 5 1316

    [6]

    Kamitsuna H, Ishii K, Shibata T, Kurishima K, Ida M 2004 IEEE J. Sel. Top. Quant. 10 673

    [7]

    Leven A, Houtsma V, Kopf R, Baeyens Y, Chen Y K 2004 Electron. Lett. 40 833

    [8]

    Ishibashi T, Furuta T, Fushimi H, Kodama S, Ito H, Nagatsuma T, Shimizu N, Miyamoto Y 2000 IEICE Trans. Electron. 83 938

    [9]

    Ito H, Kodama S, Muramoto Y 2004 IEEE J. Sel. Top. Quantum Electron. 10 709

    [10]

    Chtioui M, Enard A, Carpentier D, Rousseau B, Lelarge F, Pommereau F, Achouche M 2008 IEEE Photon. Technol. Lett. 20 202

    [11]

    Zuo Y H, Cao Q, Zhang Y, Zhang L Z, Guo J C, Xue C L, Cheng B W, Wang Q M 2011 Chin. Phys. B 20 018504

    [12]

    Zhang Y X, Liao Z Y Zhao L J, Pan J Q, Zhu H L, Wang W 2010 Chin. Phys. B 19 074216

    [13]

    Shi T, Xiong B, Sun C Z, Luo Y 2013 IEEE Photonic. Tech. L. 25 136

    [14]

    Rouvalis E, Chtioui M, van Dijk F, Lelarge F, Fice M J, Renaud C C, Carpintero G A, Seeds A J 2012 Opt. Express 20 20090

    [15]

    Ito H, Yoshimatsuc T, Yamamotoa H, Ishibashi T 2013 Proceedings of SPIE Volume 8716 Baltimore, Maryland, USA, April 29–30, 2013 p871602-1

    [16]

    Wang L S, Zhao L J, Pan J Q, Zhang W, Wang H, Zhu H L, Wang W 2009 Opto-Electron. Rev. 17 242

    [17]

    Schiellein J, Rosales M, Polleux J L, Algani C, Merlet T, Riet M, Godin J 2011 Proceedings of the 41st European Microwave Conference Manchester, UK, October 10–13, 2011 p949

    [18]

    Ishibashi T, Kodama S, Shimizu N, Furuta T 1997 J. Appl. Phys. 36 6263

    [19]

    Matsuoka Y, Sano E 1995 Solid-State Electron. 38 1703

    [20]

    Matsuoka Y, Yamahata S, Kurishima K, Ito H 1996 Jpn. J. Appl. Phys 35 5646

    [21]

    Liu W 1998 Handbook of Ⅲ-V Heterojunction Bipolar Transistors (1st Ed.) (Malden: Wiley-Interscience) p81

    [22]

    Wang L S 2009 Ph. D. Dissertation (Beijing: Institute of Semiconductors, Chinese Academy of Science) (in Chinese) [王列松 2009 博士学位论文(北京: 中国科学院半导体研究所)]

    [23]

    Srivastava S, Roenker K P 2004 Solid-State Electro. 48 461

  • [1] 唐海涛, 米壮, 王文宇, 唐向前, 叶霞, 单欣岩, 陆兴华. 用于扫描隧道显微镜的低噪声前置电流放大器.  , 2024, 73(13): 130702. doi: 10.7498/aps.73.20240560
    [2] 段宝兴, 王佳森, 唐春萍, 杨银堂. 新型载流子积累的逆导型横向绝缘栅双极晶体管.  , 2024, 73(15): 157301. doi: 10.7498/aps.73.20240572
    [3] 段宝兴, 刘雨林, 唐春萍, 杨银堂. 肖特基结多数载流子积累新型绝缘栅双极晶体管.  , 2024, 73(7): 078501. doi: 10.7498/aps.73.20231768
    [4] 赵一默, 黄志伟, 彭仁苗, 徐鹏鹏, 吴强, 毛亦琛, 余春雨, 黄巍, 汪建元, 陈松岩, 李成. 超薄介质插层调制的氧化铟锡/锗肖特基光电探测器.  , 2021, 70(17): 178506. doi: 10.7498/aps.70.20210138
    [5] 刘静, 王琳倩, 黄忠孝. 基于凹槽结构抑制AlGaN/GaN高电子迁移率晶体管电流崩塌效应.  , 2019, 68(24): 248501. doi: 10.7498/aps.68.20191311
    [6] 赵毅, 李骏康, 郑泽杰. 硅/锗基场效应晶体管沟道中载流子散射机制研究进展.  , 2019, 68(16): 167301. doi: 10.7498/aps.68.20191146
    [7] 邓小庆, 邓联文, 何伊妮, 廖聪维, 黄生祥, 罗衡. InGaZnO薄膜晶体管泄漏电流模型.  , 2019, 68(5): 057302. doi: 10.7498/aps.68.20182088
    [8] 赵宏宇, 王頔, 魏智, 金光勇. 毫秒脉冲激光致硅光电二极管电学损伤的有限元分析及实验研究.  , 2017, 66(10): 104203. doi: 10.7498/aps.66.104203
    [9] 梁振江, 刘海霞, 牛燕雄, 尹贻恒. 基于谐振腔增强型石墨烯光电探测器的设计及 性能分析.  , 2016, 65(13): 138501. doi: 10.7498/aps.65.138501
    [10] 杨丹, 张丽, 杨盛谊, 邹炳锁. 基于垂直晶体管结构的低电压并五苯光电探测器.  , 2015, 64(10): 108503. doi: 10.7498/aps.64.108503
    [11] 马武英, 王志宽, 陆妩, 席善斌, 郭旗, 何承发, 王信, 刘默寒, 姜柯. 栅控横向PNP双极晶体管基极电流峰值展宽效应及电荷分离研究.  , 2014, 63(11): 116101. doi: 10.7498/aps.63.116101
    [12] 任舰, 闫大为, 顾晓峰. AlGaN/GaN 高电子迁移率晶体管漏电流退化机理研究.  , 2013, 62(15): 157202. doi: 10.7498/aps.62.157202
    [13] 苏丽娜, 顾晓峰, 秦华, 闫大为. 单电子晶体管电流解析模型及数值分析.  , 2013, 62(7): 077301. doi: 10.7498/aps.62.077301
    [14] 吴萍, 张杰, 李喜峰, 陈凌翔, 汪雷, 吕建国. 室温生长ZnO薄膜晶体管的紫外响应特性.  , 2013, 62(1): 018101. doi: 10.7498/aps.62.018101
    [15] 张宣妮, 张淳民, 艾晶晶. 四分束风成像偏振干涉仪信噪比的研究.  , 2013, 62(3): 030701. doi: 10.7498/aps.62.030701
    [16] 游海龙, 蓝建春, 范菊平, 贾新章, 查薇. 高功率微波作用下热载流子引起n型金属-氧化物-半导体场效应晶体管特性退化研究.  , 2012, 61(10): 108501. doi: 10.7498/aps.61.108501
    [17] 余晨辉, 罗向东, 周文政, 罗庆洲, 刘培生. 新型双异质结高电子迁移率晶体管的电流崩塌效应研究.  , 2012, 61(20): 207301. doi: 10.7498/aps.61.207301
    [18] 毛维, 杨翠, 郝跃, 张进成, 刘红侠, 马晓华, 王冲, 张金风, 杨林安, 许晟瑞, 毕志伟, 周洲, 杨凌, 王昊. 场板抑制GaN高电子迁移率晶体管电流崩塌的机理研究.  , 2011, 60(1): 017205. doi: 10.7498/aps.60.017205
    [19] 王 俊, 王 磊, 董业民, 邹 欣, 邵 丽, 李文军, 杨华岳. 高压双扩散漏端MOS晶体管双峰衬底电流的形成机理及其影响.  , 2008, 57(7): 4492-4496. doi: 10.7498/aps.57.4492
    [20] 任红霞, 郝 跃, 许冬岗. N型槽栅金属-氧化物-半导体场效应晶体管抗热载流子效应的研究.  , 2000, 49(7): 1241-1248. doi: 10.7498/aps.49.1241
计量
  • 文章访问数:  6383
  • PDF下载量:  520
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-05
  • 修回日期:  2013-08-25
  • 刊出日期:  2013-11-05

/

返回文章
返回
Baidu
map