-
在有效质量近似下利用打靶法求出Ga1-xInxNyAs1-y/GaAs量子阱中的本征能级En, 并通过费米黄金规则计算电子-LO声子由第一激发态到基态的散射率和平均散射率随温度、阱宽以及氮(N)和铟(In)组分变化的规律. 计算结果表明: 在In 组分恒定的情况下, 随着N组分的增加, 散射率和平均散射率增加; 在N组分恒定的情况下, 随着In组分的增加, 散射率和平均散射率减小; 随着温度的增加, 在温度较低时散射率和平均散射率随温度的增加变化不大, 在温度较高时随温度的增加而增加; 随着阱宽的增加, 散射率和平均散射率都是先增加到一个最大值, 然后再减小, 最大值出现在阱宽200 Å附近. 计算结果对Ga1-xInxNyAs1-y/GaAs量子阱在光电子器件应用方面有一定的指导意义.
-
关键词:
- 费米黄金规则 /
- Ga1-xInxNyAs1-y/GaAs量子阱 /
- LO声子 /
- 散射率
Within the framework of effective mass approximation, the values of energy eigenvalue En in Ga1-xInxNyAs1-y/GaAs quantum well are theoretically calculated using shooting method. In addition, we calculate the electron-LO phonon scattering and mean scattering rate at different temperatures, well width, N concentrations and In concentrations for an electron initially in the second subband and finally in the ground state using Fermi’s golden rule. It is shown that the electron-LO phonon scattering and mean scattering rate increase with the increase of N concentration under the In concentration constant. The electron-LO phonon scattering and mean scattering rate decrease with the increase of In concentration under the In concentration constant. The electron-LO phonon scattering increases monotonically with the increase of temperature. When the temperature is relatively low, the variation of mean scattering rate is not obvious with the increase of temperature When the temperature is relatively high, mean scattering rate increases with the increase of temperature. The scattering and mean scattering rate increase up to their maxima and then begin to decrease as the well width increases. The maximum value is reached when the well width is about 200 Å. Our calculated results are meaningful and can be used for designing the optoelectronic devices based on Ga1-xInxNyAs1-y/GaAs quantum well.-
Keywords:
- Fermi’ /
- s golden rule /
- Ga1-xInxNyAs1-y/GaAs quantum well /
- LO phonon
[1] Lin G J, Lai H K, Li C, Chen S Y, Yu J Z 2008 Chin. Phys. B 17 3479
[2] Wu Y F, Liang X X, Baja K K 2005 Chin. Phys. B 14 2314
[3] Zheng Y J, Ji Z W, Xu X G 2011 Acta Phys. Sin. 60 047805 (in Chinese) [郑雨军, 冀子武, 徐现刚 2011 60 047805]
[4] Wang H L, Jiang L M, Gong Q, Feng S L 2010 Physica B 405 3818
[5] Kondow M, UomiK, Niwa A, Watahiki S, Yazawa Y 1996 Jpn. J. Appl. Phys. 35 1273
[6] Spuhler G J, Krainer L, Liverini V, Grange R, Haiml M, Pawlik S, Schmidt B, Schön S, Keller U 2005 Phot. Technol. Lett. 17 1319
[7] Rutz A, Liverini V, Maas D J H C, Rudin B, Bellancourt A R, Schön S, Keller U 2006 Elec. Lett. 42 926
[8] Zhan L, Chan K S, Pun E Y B, Ho H P 2003 Opt. Commun. 228 167
[9] Kondow M, Nakatsuka S, Kitatani T, Yazawa Y, Okai M 1996 Jpn. J. Appl. Phys. 35 5711
[10] Kondow M, Kitatani T 2002 Semicod. Sci. Technol. 17 746
[11] Zhang S Y, Niu Z C, Ni H Q, Wu D H, He Z H, Sun Z, Han Q, Wu R H 2005 Appl. Phys. Lett. 87 161911
[12] Niu Z C, Zhang S Y, Ni H Q, Han Q, Yang X H, Wu D H, Zhao H, Peng H L, Xu Y Q, Du Y, Li S Y, He Z H, Ren Z W, Zhou Z Q, Xiong Y H, Wang H L, Wu R H 2005 Appl. Phys. Lett. 87 231121
[13] Niu Z C, Ni H Q, Xu X H, Zhang W, Xu Y Q, Wu R H 2003 Phys. Rev. B 68 235326
[14] Sawaki N 1986 J. Phys. C: Solid State Phys. 19 4965
[15] Weber G, Paula A M D, Ryan J F 1991 Semicod. Sci. Technol. 6 397
[16] Xie W F, Zhu W 2012 Commun. Theor. Phys. 38 375
[17] Yang F J, Ban S L 2012 Acta Phys. Sin. 61 087201 (in Chinese) [杨福军, 班士良 2012 61 087201]
[18] Xia Z L, Fang Z X, Shao J D 2006 Acta Phys. Sin. 55 3007 (in Chinese) [夏志林, 范正修, 邵建达 2006 55 3007]
[19] Murdin B N, Hollingworth A R, Kamal-Saadi M, Kotitschke R T 1999 Phys. Rev. B 59 R7817
[20] Wetzel C, Walukiewicz W, Ager Ⅲ J W 1997 Proc. Mat. Res. Soc. Symp. 449 567
[21] Zheng Y S, Lu T Q 1997 Semicond. Sci. Technol. 12 296
[22] Blom P W M, Haverkort J E M, Hail P J, Wolter J H 1993 Appl. Phys. Lett. 62 1490
[23] Rudin S 1990 Phys. Rev. B 41 7713
[24] Potter R J, Balkan N 2004 J. Phys.: Condens. Matter 16 S3387
-
[1] Lin G J, Lai H K, Li C, Chen S Y, Yu J Z 2008 Chin. Phys. B 17 3479
[2] Wu Y F, Liang X X, Baja K K 2005 Chin. Phys. B 14 2314
[3] Zheng Y J, Ji Z W, Xu X G 2011 Acta Phys. Sin. 60 047805 (in Chinese) [郑雨军, 冀子武, 徐现刚 2011 60 047805]
[4] Wang H L, Jiang L M, Gong Q, Feng S L 2010 Physica B 405 3818
[5] Kondow M, UomiK, Niwa A, Watahiki S, Yazawa Y 1996 Jpn. J. Appl. Phys. 35 1273
[6] Spuhler G J, Krainer L, Liverini V, Grange R, Haiml M, Pawlik S, Schmidt B, Schön S, Keller U 2005 Phot. Technol. Lett. 17 1319
[7] Rutz A, Liverini V, Maas D J H C, Rudin B, Bellancourt A R, Schön S, Keller U 2006 Elec. Lett. 42 926
[8] Zhan L, Chan K S, Pun E Y B, Ho H P 2003 Opt. Commun. 228 167
[9] Kondow M, Nakatsuka S, Kitatani T, Yazawa Y, Okai M 1996 Jpn. J. Appl. Phys. 35 5711
[10] Kondow M, Kitatani T 2002 Semicod. Sci. Technol. 17 746
[11] Zhang S Y, Niu Z C, Ni H Q, Wu D H, He Z H, Sun Z, Han Q, Wu R H 2005 Appl. Phys. Lett. 87 161911
[12] Niu Z C, Zhang S Y, Ni H Q, Han Q, Yang X H, Wu D H, Zhao H, Peng H L, Xu Y Q, Du Y, Li S Y, He Z H, Ren Z W, Zhou Z Q, Xiong Y H, Wang H L, Wu R H 2005 Appl. Phys. Lett. 87 231121
[13] Niu Z C, Ni H Q, Xu X H, Zhang W, Xu Y Q, Wu R H 2003 Phys. Rev. B 68 235326
[14] Sawaki N 1986 J. Phys. C: Solid State Phys. 19 4965
[15] Weber G, Paula A M D, Ryan J F 1991 Semicod. Sci. Technol. 6 397
[16] Xie W F, Zhu W 2012 Commun. Theor. Phys. 38 375
[17] Yang F J, Ban S L 2012 Acta Phys. Sin. 61 087201 (in Chinese) [杨福军, 班士良 2012 61 087201]
[18] Xia Z L, Fang Z X, Shao J D 2006 Acta Phys. Sin. 55 3007 (in Chinese) [夏志林, 范正修, 邵建达 2006 55 3007]
[19] Murdin B N, Hollingworth A R, Kamal-Saadi M, Kotitschke R T 1999 Phys. Rev. B 59 R7817
[20] Wetzel C, Walukiewicz W, Ager Ⅲ J W 1997 Proc. Mat. Res. Soc. Symp. 449 567
[21] Zheng Y S, Lu T Q 1997 Semicond. Sci. Technol. 12 296
[22] Blom P W M, Haverkort J E M, Hail P J, Wolter J H 1993 Appl. Phys. Lett. 62 1490
[23] Rudin S 1990 Phys. Rev. B 41 7713
[24] Potter R J, Balkan N 2004 J. Phys.: Condens. Matter 16 S3387
计量
- 文章访问数: 6144
- PDF下载量: 340
- 被引次数: 0