搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

亲水性微观粗糙表面润湿状态转变性能研究

刘思思 张朝辉 何建国 周杰 尹恒洋

引用本文:
Citation:

亲水性微观粗糙表面润湿状态转变性能研究

刘思思, 张朝辉, 何建国, 周杰, 尹恒洋

Wetting state transition on hydrophilic microscale rough surface

Liu Si-Si, Zhang Chao-Hui, He Jian-Guo, Zhou Jie, Yin Heng-Yang
PDF
导出引用
  • 以亲水性微观粗糙表面上不同几何形貌及分布的微柱阵列为对象, 讨论了液滴在亲水性粗糙表面上的润湿过程以及润湿状态的转变阶段. 从能量角度分别考察了微观粗糙结构几何形貌及分布、微柱几何参数、固体表面亲水性、接触角滞后作用等因素对液滴润湿状态转变的影响规律. 研究发现: 在亲水粗糙表面, 正方形微柱呈正六边形阵列分布时, 液滴更容易形成稳定的Cassie状态, 或者液滴仅发生Cassie状态向中间浸润状态的转变; 与此同时, 减小微柱间距、增大方柱宽度或圆柱直径、增大微柱高度、增强固体表面的亲水性将有利于液滴处于稳定的Cassie状态, 或阻止润湿状态向伪-Wenzel或Wenzel状态转变; 然而, 当液滴处于Cassie状态时, 较小的固-液界面面积分数或减弱固体表面亲水性能均有利于增大液滴的表观接触角, 因此在亲水表面设计粗糙结构时应综合考虑润湿状态稳定性和较大表观接触角两方面因素; 此外, 接触角滞后作用对于液滴状态的稳定性以及疏水性能的实现具有相反作用的影响. 研究结果为液滴在亲水表面获得稳定Cassie状态的粗糙结构设计方法提供了理论依据.
    The wetting process and the wetting state transition stages are studied on hydrophilic rough surfaces covered with microscale pillar arrays of different geometrical morphologies and distributions. The effects of geometrical morphology, distribution, parameters, hydrophilicity, and contact angle hysteresis of pillar arrays on wetting state transition are analyzed by an energy method. The results indicate that on the hydrophilic rough surface covered with hexagonal arrays of square pillars, the water droplet tends to stay in a stable Cassie state, or the wetting state transits only from a Cassie state to an intermediate state. Moreover, smaller pillar interval, larger square pillar width or diameter of cylinder, higher pillar height, strong hydrophilicity are beneficial to the stability of Cassie state, therefore, the wetting state could be prevented from transforming to pseudo-Wenzel state or Wenzel state. However, smaller area fraction of solid-liquid interface under the water drop and weaker hydrophilicity is beneficial to increasing the apparent contact angle. Therefore, the stability of wetting state and the large apparent contact angle should be considered in hydrophilic surface design. The contact angle hysteresis gives rise to an opposite effect on wetting state stability and the hydrophobicity or superhydrophobicity of rough solid surface. The results provide a theoretical foundation for designing the substrates covered with hydrophilic rough structures, on which the water droplet will obtain a stable Cassie state.
    • 基金项目: 中央高校基本科研业务费(批准号: M12JB00050, M13JB00240)资助的课题.
    • Funds: Project supported by the Fundamental Research Fund for the Central Universities, China (Grant Nos. M12JB00050, M13JB00240 ).
    [1]

    Koch K, Barthlott W 2009 Phil. Trans. R. Soc. A 367 1487

    [2]

    Bhushan B 2009 Phil. Trans. R. Soc. A 367 1445

    [3]

    Frstner R, Barthlott W 2005 Langmuir 21 956

    [4]

    Bhushan B, Nosonovsky M, Jung Y C 2007 J. R. Soc. Interface 4 643

    [5]

    Song B W, Guo Y H, Luo Z Z, Xu X H, Wang Y 2013 Acta Phys. Sin. 62 154701 (in Chinese) [宋保维, 郭云鹤, 罗荘竹, 徐向辉, 王鹰 2013 62 154701]

    [6]

    Liu S S, Zhang C H, Liu J M 2010 Acta Phys. Sin. 59 6902 (in Chinese) [刘思思, 张朝辉, 刘俊铭 2010 59 6902]

    [7]

    He Y, Jiang C Y, Yin H X, Chen J, Yuan W Z 2011 J. Colloid Interface Sci. 364 219

    [8]

    Lakshmi R V, Bharathidasan T, Bharathibai J B 2011 Appl. Surf. Sci. 257 10421

    [9]

    Ran C B, Ding G Q, Liu W C, Deng Y, Hou W T 2008 Langmuir 24 9952

    [10]

    Wenzel N R 1936 Ind. Eng. Chem. 28 988

    [11]

    Cassie A B D, Baxter S 1944 Trans. Faraday Soc. 40 546

    [12]

    Ishino C, Okumura K 2006 Europhys. Lett. 76 464

    [13]

    Wang B, Nian J Y, Tie L, Zhang Y B, Guo Z G 2013 Acta Phys. Sin. 62 146801 (in Chinese) [王奔, 念敬妍, 铁璐, 张亚斌, 郭志光 2013 62 146801]

    [14]

    Patankar N A 2010 Langmuir 26 8941

    [15]

    Patankar N A 2003 Langmuir 19 1249

    [16]

    Extrand C W 2002 Langmuir 18 7991

    [17]

    Lafuma A, Quere D 2003 Nat. Mater. 2 457

    [18]

    Bormashenko E, Pogerb R, Whyman G, Mordehai E 2007 Langmuir 23 6501

    [19]

    He B, Patankar N A, Lee J 2003 Langmuir 19 4999

    [20]

    Bico J, Marzolin C, Quere D 1999 Europhys. Lett. 47 220

    [21]

    Nosonovsky M, Bhushan B 2008 Langmuir 24 1525

    [22]

    Moulinet S, Bartolo D 2007 Eur. Phys. J. E 24 251

    [23]

    Ishino C, Okumura K 2008 Eur. Phys. J. E 25 415

    [24]

    Whyman G, Bormashenko E 2011 Langmuir 27 8171

    [25]

    Im M, Im H, Lee J H, Yoon J B, Choi Y K 2010 Langmuir 26 17389

    [26]

    Bormashenko E, Bormashenko Y, Whyman G, Pogreb R, Stanevsky O 2006 J. Colloid Interface Sci. 302 308

    [27]

    Liu H H, Zhang H Y, Li W 2011 Langmuir 27 6260

    [28]

    Extrand C W 2002 Langmuir 18 7991

    [29]

    Wang J D, Chen D R 2008 Langmuir 24 10174

    [30]

    Jung Y C, Bhushan B 2007 Scripta Mater. 57 1057

    [31]

    Jurgen J, Holger G, Rachel Y R 2004 Langmuir 20 10015

    [32]

    Yoshimitsu Z, Nakajima A, Watanabe T, Hashimoto K 2002 Langmuir 18 5818

  • [1]

    Koch K, Barthlott W 2009 Phil. Trans. R. Soc. A 367 1487

    [2]

    Bhushan B 2009 Phil. Trans. R. Soc. A 367 1445

    [3]

    Frstner R, Barthlott W 2005 Langmuir 21 956

    [4]

    Bhushan B, Nosonovsky M, Jung Y C 2007 J. R. Soc. Interface 4 643

    [5]

    Song B W, Guo Y H, Luo Z Z, Xu X H, Wang Y 2013 Acta Phys. Sin. 62 154701 (in Chinese) [宋保维, 郭云鹤, 罗荘竹, 徐向辉, 王鹰 2013 62 154701]

    [6]

    Liu S S, Zhang C H, Liu J M 2010 Acta Phys. Sin. 59 6902 (in Chinese) [刘思思, 张朝辉, 刘俊铭 2010 59 6902]

    [7]

    He Y, Jiang C Y, Yin H X, Chen J, Yuan W Z 2011 J. Colloid Interface Sci. 364 219

    [8]

    Lakshmi R V, Bharathidasan T, Bharathibai J B 2011 Appl. Surf. Sci. 257 10421

    [9]

    Ran C B, Ding G Q, Liu W C, Deng Y, Hou W T 2008 Langmuir 24 9952

    [10]

    Wenzel N R 1936 Ind. Eng. Chem. 28 988

    [11]

    Cassie A B D, Baxter S 1944 Trans. Faraday Soc. 40 546

    [12]

    Ishino C, Okumura K 2006 Europhys. Lett. 76 464

    [13]

    Wang B, Nian J Y, Tie L, Zhang Y B, Guo Z G 2013 Acta Phys. Sin. 62 146801 (in Chinese) [王奔, 念敬妍, 铁璐, 张亚斌, 郭志光 2013 62 146801]

    [14]

    Patankar N A 2010 Langmuir 26 8941

    [15]

    Patankar N A 2003 Langmuir 19 1249

    [16]

    Extrand C W 2002 Langmuir 18 7991

    [17]

    Lafuma A, Quere D 2003 Nat. Mater. 2 457

    [18]

    Bormashenko E, Pogerb R, Whyman G, Mordehai E 2007 Langmuir 23 6501

    [19]

    He B, Patankar N A, Lee J 2003 Langmuir 19 4999

    [20]

    Bico J, Marzolin C, Quere D 1999 Europhys. Lett. 47 220

    [21]

    Nosonovsky M, Bhushan B 2008 Langmuir 24 1525

    [22]

    Moulinet S, Bartolo D 2007 Eur. Phys. J. E 24 251

    [23]

    Ishino C, Okumura K 2008 Eur. Phys. J. E 25 415

    [24]

    Whyman G, Bormashenko E 2011 Langmuir 27 8171

    [25]

    Im M, Im H, Lee J H, Yoon J B, Choi Y K 2010 Langmuir 26 17389

    [26]

    Bormashenko E, Bormashenko Y, Whyman G, Pogreb R, Stanevsky O 2006 J. Colloid Interface Sci. 302 308

    [27]

    Liu H H, Zhang H Y, Li W 2011 Langmuir 27 6260

    [28]

    Extrand C W 2002 Langmuir 18 7991

    [29]

    Wang J D, Chen D R 2008 Langmuir 24 10174

    [30]

    Jung Y C, Bhushan B 2007 Scripta Mater. 57 1057

    [31]

    Jurgen J, Holger G, Rachel Y R 2004 Langmuir 20 10015

    [32]

    Yoshimitsu Z, Nakajima A, Watanabe T, Hashimoto K 2002 Langmuir 18 5818

  • [1] 谷靖萱, 郑庭, 郭明帅, 夏冬生, 张会臣. 计入粗糙峰的微纳结构表面水润滑流体动力学仿真.  , 2024, 73(11): 114601. doi: 10.7498/aps.73.20240333
    [2] 叶欣, 单彦广. 疏水表面振动液滴模态演化与流场结构的数值模拟.  , 2021, 70(14): 144701. doi: 10.7498/aps.70.20210161
    [3] 春江, 王瑾萱, 徐晨, 温荣福, 兰忠, 马学虎. 液滴撞击超亲水表面的最大铺展直径预测模型.  , 2021, 70(10): 106801. doi: 10.7498/aps.70.20201918
    [4] 胡梦丹, 张庆宇, 孙东科, 朱鸣芳. 纳米结构超疏水表面冷凝现象的三维格子玻尔兹曼方法模拟.  , 2019, 68(3): 030501. doi: 10.7498/aps.68.20181665
    [5] 程广贵, 张忠强, 丁建宁, 袁宁一, 许多. 石墨表面熔融硅的润湿行为研究.  , 2017, 66(3): 036801. doi: 10.7498/aps.66.036801
    [6] 胡海豹, 王德政, 鲍路瑶, 文俊, 张招柱. 基于润湿阶跃的水下大尺度气膜封存方法.  , 2016, 65(13): 134701. doi: 10.7498/aps.65.134701
    [7] 王宇翔, 陈硕. 微粗糙结构表面液滴浸润特性的多体耗散粒子动力学研究.  , 2015, 64(5): 054701. doi: 10.7498/aps.64.054701
    [8] 徐威, 兰忠, 彭本利, 温荣福, 马学虎. 微液滴在不同能量表面上润湿状态的分子动力学模拟.  , 2015, 64(21): 216801. doi: 10.7498/aps.64.216801
    [9] 吴兵兵, 吴化平, 张征, 董晨晨, 柴国钟. 微纳复合结构表面稳定润湿状态及转型过程的热力学分析.  , 2015, 64(17): 176801. doi: 10.7498/aps.64.176801
    [10] 周建臣, 耿兴国, 林可君, 张永建, 臧渡洋. 微液滴在超疏水表面的受迫振动及其接触线的固着-移动转变.  , 2014, 63(21): 216801. doi: 10.7498/aps.63.216801
    [11] 宋保维, 郭云鹤, 罗荘竹, 徐向辉, 王鹰. 疏水表面减阻环带实验研究.  , 2013, 62(15): 154701. doi: 10.7498/aps.62.154701
    [12] 王亚珍, 黄平. 纳米级随机粗糙表面微观滑动摩擦力的计算研究.  , 2013, 62(10): 106801. doi: 10.7498/aps.62.106801
    [13] 李艳, 蔡杰, 吕鹏, 邹阳, 万明珍, 彭冬晋, 顾倩倩, 关庆丰. 强流脉冲电子束诱发纯钛表面的微观结构及应力状态.  , 2012, 61(5): 056105. doi: 10.7498/aps.61.056105
    [14] 王雪涛, 关庆丰, 邱冬华, 程秀围, 李艳, 彭冬晋, 顾倩倩. 强流脉冲电子束作用下金属纯Cu的微观结构状态——空位簇缺陷及表面微孔结构.  , 2010, 59(10): 7252-7257. doi: 10.7498/aps.59.7252
    [15] 贾明, 赖延清, 田忠良, 刘业翔. Mo纳米薄膜热力学性质的分子动力学模拟.  , 2009, 58(2): 1139-1148. doi: 10.7498/aps.58.1139
    [16] 林 洁, 刘绍军, 李融武, 祝文军. 自由能方法与零压下Al的熔化温度.  , 2008, 57(1): 61-66. doi: 10.7498/aps.57.61
    [17] 余志明, 尹登峰. 一种晶体表面自由能的计算方法.  , 2005, 54(8): 3822-3830. doi: 10.7498/aps.54.3822
    [18] 张维佳, 王天民. ITO前驱物氢氧化铟In(OH)Zr3理论研究.  , 2004, 53(6): 1923-1929. doi: 10.7498/aps.53.1923
    [19] 李超荣, 朱爱军, 戴道扬, 麦振洪. SrTiO3基片的晶体质量及表面粗糙结构的X射线研究.  , 1997, 46(9): 1758-1763. doi: 10.7498/aps.46.1758
    [20] 丁厚昌, 乔登江, 张宗燧. 面心晶格的固溶体的自由能.  , 1957, 13(6): 515-524. doi: 10.7498/aps.13.515
计量
  • 文章访问数:  7046
  • PDF下载量:  568
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-23
  • 修回日期:  2013-07-11
  • 刊出日期:  2013-10-05

/

返回文章
返回
Baidu
map