-
提出将开槽单矩形栅和圆形电子注作为 W波段返波振荡器的注波互作用回路. 使用 3维电磁场仿真软件CST-MWS对开槽单矩形栅的高频特性进行了仿真分析, 研究结果表明: 相对于传统单矩形栅, 新结构的基模带宽有所展宽; 基模与高次模发生模式竞争的可能性很小; 在采用圆形电子注时新结构能获得大得多的耦合阻抗; 新结构的趋肤损耗略有改善. 将该慢波结构应用于设计一支以94 GHz为频带中心的W 波段返波振荡器: 设计了简洁的慢波过渡部分、输出耦合器和终端匹配衰减器, 优化参数后获得了良好的信号传输特性; 利用粒子模拟软件CST-PS对返波振荡器模型进行了三维大信号注波互作用计算, 设定合适的电子注电流等参数后, 调整工作电压在较宽的频带内获得了瓦级的功率输出, 电子效率在整个频带范围内优于1%.A slotted rectangular single-grating with a cylindrical electron beam was proposed as the beam-wave interaction circuit of a W-band backward wave oscillator (BWO). Analysis on the slow-wave characteristics of the structure was done utilizing three-dimensional electromagnetic field simulation software CST-MWS. Results are as follows: The new structure can have a much larger coupling impedance than traditional one; the bandwidth of the fundamental mode can be broadened and the fundamental mode is unlikely to compete with the high-order mode. The loss caused by the skin effect is reduced. The structure was applied to design a W-band backward wave oscillator whose band center is 94 GHz. A simple slow-wave transition part, and the output coupler and terminal matching attenuator were designed, the parameters of which were optimized to obtain good signal transmission. Using CST-PS’s PIC solver, a three-dimensional large-signal particle simulation was done. After setting a suitable electron current and other parameters, watts scale peak output power was obtained within a wide frequency band by adjusting the working voltage, and the electronic efficiency in the band was greater than 1%.
-
Keywords:
- slotted rectangular single-grating /
- cylindrical beam /
- back ward wave oscillator /
- W band
[1] Booske J H, Dobbs R J, Joye C D, Kory C L, Neil G R, Park G S, Park J, Temkin R J 2011 IEEE Trans Terahertz Science and Technology 1 54
[2] Dobroiu A, Yamashita M, Ohshima Y N, Morita Y, OtaniC, Kawase K 2004 Appl. Opt. 43 5637
[3] Gorshunov B, Volkov A, Spektor I, Prokhorov A, Mukhin A, Dressel M, UchidaS, Loidl A 2005 Int. J. Infrared Millimeter Waves 26 1217
[4] Pronin A V, Goncharov Y G, Fischer T, Wosnitza J 2009 Rev. Sci. Instrum. 80 1
[5] Ives L, Kory C, Read M, Neilson J, Caplan M, Chubun N, Wilcox R, Robinson T 2004 Monterey IEEE International Vacuum Electronics Conference April 27-29 2004 p67
[6] Feng J J, Ren D P, Li H Y, Tang Y, Xing J Y 2011 Terahertz Science and Technology 4 164
[7] Dayton J A, Kory C L, Mearini G T, Malta D, Lueck M, Vancil B 2012 Monterey IEEE International Vacuum Electronics Conference April 24-26 2012 p399
[8] Dayton J A, Kory C L, Mearini G T, 2006 Monterey IEEE International Vacuum Electronics Conference April 25-27 2006 p423
[9] Xu X, Wei Y, Shen F, Huang M Z, Tang T, Duan Z Y, Gong Y B 2012 Chin. Phys. B 21 068402
[10] Mineo M, Paoloni C 2010 IEEE Trans. Electron Devices 57 3169
[11] Shin Y M, Barnett L R, Luhmann N C 2009 IEEE Trans. Electron Devices 56 706
[12] He J, Wei Y Y, Gong Y B, Duan Z Y, Wang W X 2010 Acta Phys. Sin. 59 2843 (in Chinese) [何俊, 魏彦玉, 宫玉彬, 段兆云, 王文祥 2010 59 2843]
[13] Mineo M, Paoloni C 2010 IEEE Trans. Electron Devices 57 1481
[14] Collin R E 1966 Foundaations for microwave engineering (New York: McGraw-Hill) p383
[15] McVey B D, Basten M A, Booske J H, Joe J, Scharer J E 1994 IEEE Transactions on Microwave Theory and Techniques 42 995
[16] Zaginaylov G I, Hirata A, Ueda T, Shiozawa T 2000 IEEE Trans. Plasma Science 28 614
[17] Gong Y B, Lu Z G, Wang G J, Wei Y Y, Huang M Z, Wang W X 2006 J. InfraredMillim. Waves 25 0173 (in Chinese) [宫玉彬, 路志刚, 王冠军, 魏彦玉, 黄民智, 王文祥 2006 红外与毫米波学报 25 173]
[18] Lu Z G, Wei Y Y, Gong Y B, Wu Z M, Wang W X 2007 Acta Phys. Sin. 56 3318 (in Chinese) [路志刚, 魏彦玉, 宫玉彬, 吴周淼, 王文祥 2007 56 3318]
[19] Lu Z G, Wei Y Y, Gong Y B, Wang W X 2006 J. InfraredMillim. Waves 25 349 (in Chinese) [路志刚, 魏彦玉, 宫玉彬, 王文祥 2006 红外与毫米波学报 25 349]
[20] Pierce J R 1956 IRE Trans. Electron Devices 3183
[21] Booske J H, McVey B D, Antonsen T M 1993 J. Appl. Phys. 73 4140
[22] Nguyen K T, Pasour J A, Antonsen T M, Larsen P B, Petillo J J, Levush B 2009 IEEE Trans. Electron Devices 55 744
[23] Liu Q L, Wang Z C, Liu P K 2012 Acta Phys. Sin. 61 124101 (in Chinese) [刘青伦, 王自成, 刘濮鲲 2012 61 124101]
[24] Kory C L, Read M E, Ives R L, Booske J H, Borchard P 2009 IEEE Trans. Electron Devices 56 7
[25] Calame J P, Garven M, Lobas D, Myers R E, Wood F, Abe D K 2006 Monterey IEEE International Vacuum Electronics Conference April 25-27 2006 p37
-
[1] Booske J H, Dobbs R J, Joye C D, Kory C L, Neil G R, Park G S, Park J, Temkin R J 2011 IEEE Trans Terahertz Science and Technology 1 54
[2] Dobroiu A, Yamashita M, Ohshima Y N, Morita Y, OtaniC, Kawase K 2004 Appl. Opt. 43 5637
[3] Gorshunov B, Volkov A, Spektor I, Prokhorov A, Mukhin A, Dressel M, UchidaS, Loidl A 2005 Int. J. Infrared Millimeter Waves 26 1217
[4] Pronin A V, Goncharov Y G, Fischer T, Wosnitza J 2009 Rev. Sci. Instrum. 80 1
[5] Ives L, Kory C, Read M, Neilson J, Caplan M, Chubun N, Wilcox R, Robinson T 2004 Monterey IEEE International Vacuum Electronics Conference April 27-29 2004 p67
[6] Feng J J, Ren D P, Li H Y, Tang Y, Xing J Y 2011 Terahertz Science and Technology 4 164
[7] Dayton J A, Kory C L, Mearini G T, Malta D, Lueck M, Vancil B 2012 Monterey IEEE International Vacuum Electronics Conference April 24-26 2012 p399
[8] Dayton J A, Kory C L, Mearini G T, 2006 Monterey IEEE International Vacuum Electronics Conference April 25-27 2006 p423
[9] Xu X, Wei Y, Shen F, Huang M Z, Tang T, Duan Z Y, Gong Y B 2012 Chin. Phys. B 21 068402
[10] Mineo M, Paoloni C 2010 IEEE Trans. Electron Devices 57 3169
[11] Shin Y M, Barnett L R, Luhmann N C 2009 IEEE Trans. Electron Devices 56 706
[12] He J, Wei Y Y, Gong Y B, Duan Z Y, Wang W X 2010 Acta Phys. Sin. 59 2843 (in Chinese) [何俊, 魏彦玉, 宫玉彬, 段兆云, 王文祥 2010 59 2843]
[13] Mineo M, Paoloni C 2010 IEEE Trans. Electron Devices 57 1481
[14] Collin R E 1966 Foundaations for microwave engineering (New York: McGraw-Hill) p383
[15] McVey B D, Basten M A, Booske J H, Joe J, Scharer J E 1994 IEEE Transactions on Microwave Theory and Techniques 42 995
[16] Zaginaylov G I, Hirata A, Ueda T, Shiozawa T 2000 IEEE Trans. Plasma Science 28 614
[17] Gong Y B, Lu Z G, Wang G J, Wei Y Y, Huang M Z, Wang W X 2006 J. InfraredMillim. Waves 25 0173 (in Chinese) [宫玉彬, 路志刚, 王冠军, 魏彦玉, 黄民智, 王文祥 2006 红外与毫米波学报 25 173]
[18] Lu Z G, Wei Y Y, Gong Y B, Wu Z M, Wang W X 2007 Acta Phys. Sin. 56 3318 (in Chinese) [路志刚, 魏彦玉, 宫玉彬, 吴周淼, 王文祥 2007 56 3318]
[19] Lu Z G, Wei Y Y, Gong Y B, Wang W X 2006 J. InfraredMillim. Waves 25 349 (in Chinese) [路志刚, 魏彦玉, 宫玉彬, 王文祥 2006 红外与毫米波学报 25 349]
[20] Pierce J R 1956 IRE Trans. Electron Devices 3183
[21] Booske J H, McVey B D, Antonsen T M 1993 J. Appl. Phys. 73 4140
[22] Nguyen K T, Pasour J A, Antonsen T M, Larsen P B, Petillo J J, Levush B 2009 IEEE Trans. Electron Devices 55 744
[23] Liu Q L, Wang Z C, Liu P K 2012 Acta Phys. Sin. 61 124101 (in Chinese) [刘青伦, 王自成, 刘濮鲲 2012 61 124101]
[24] Kory C L, Read M E, Ives R L, Booske J H, Borchard P 2009 IEEE Trans. Electron Devices 56 7
[25] Calame J P, Garven M, Lobas D, Myers R E, Wood F, Abe D K 2006 Monterey IEEE International Vacuum Electronics Conference April 25-27 2006 p37
计量
- 文章访问数: 5725
- PDF下载量: 695
- 被引次数: 0