-
带状注扩展互作用速调管具有高峰值功率和高平均功率的特点, 是一种具有广泛应用前景的电真空器件. 基于电子流振荡理论, 在小信号条件下推导了纵向模式为2π模的三间隙谐振腔的电子负载电导和电子负载电纳的表达式, 分析了等离子体频率、间隙宽度和相邻间隙中心之间的距离等参数对电子负载电导和电子负载电纳的影响. 根据理论分析结果, 结合三维电磁仿真软件完成了一款工作于W波段的带状注扩展互作用速调管放大器的模拟设计. 电子注横截面尺寸为4 mm × 0.32 mm时, 在工作电压为19.5 kV, 电流为3.5 A, 输入功率为1 W, 轴向引导磁场为0.85 T的条件下, 频率94.47 GHz处得到输出功率为5773 W, 增益为37.6 dB, 电子效率为8.46%, 3 dB带宽约140 MHz.
-
关键词:
- W波段 /
- 带状注扩展互作用速调管 /
- 电子流振荡理论 /
- 注波互作用
The sheet beam extended interaction klystron is an important kind of millimeter-wave and sub-millimeter-wave vacuum electron device, which has extensive applications such as in high resolution radar, imaging system, satellite communication and precision guided missiles. Compared with conventional pencil beam klystron, the sheet beam extended interaction klystron, in which a thin rectangular sheet beam is used, can generate higher power by obtaining higher current and reducing space-charge-effect of electron beam. Kinematical theory and space charge wave theory are extensively used to analyze the bunching process of electrons. Kinematical theory is precise when electron beam is especially small because the influence of space charge effect is ignored, while space charge wave theory is accurate when the modulation of electron beam is small since it is based on the premise of small amplitude. Electron flow oscillatory theory is a compromise between kinematical theory and space charge wave theory, which adapts to the bigger modulation of electron beam than space charge wave theory, while it is inaccurate in the case of big bunching parameter. Based on electron flow oscillatory theory under the small signal condition, the influence of electron beam on standing wave electric field of 2π mode in a three-gap cavity is analyzed, and the expressions of beam loading conductance and beam loading susceptance in a three-gap cavity are obtained. The influences of plasma frequency, transit angle of single gap and transit angle of drift on the interaction of beam and wave in a three-gap cavity are discussed. The results show that space-charge-effect of beam is unbeneficial to the interaction between beam and wave, otherwise beam loading conductance and beam loading susceptance fluctuate with the increasing of transit angle of single gap and transit angle of drift. A W-band sheet beam extended interaction klystron is designed by theoretical analysis and 3D PIC software. The output power of 5773 W at 94.47 GHz is obtained with an efficiency of 8.46%, a gain of 37.6 dB and a 3 dB bandwith of about 140 MHz, when beam voltage is 19.5 kV, current is 3.5 A and focus magnetic field is 0.85 T. This research is important for the engineering of the W-band sheet beam extended interaction klystron amplifier.-
Keywords:
- W-band /
- sheet beam extended interaction klystron /
- electron flow oscillatory theory /
- beam-wave interaction
[1] Chen S Y, Ruan C J, Yong W, Zhang C Q, Zhao D, Yang X D, Wang S Z 2014 IEEE Trans. Plasma Sci. 42 91Google Scholar
[2] Chang Z W, Meng L, Yin Y, Wang B, Li H L, Rauf A, Ullah S, Bi L J, Peng R B 2018 IEEE Trans. Electron Dev. 65 1179Google Scholar
[3] 吴洋, 许州, 周霖, 李文君, 唐传祥 2012 61 224101Google Scholar
Wu Y, Xu Z, Zhou L, Li W J, Tang C X 2012 Acta Phys. Sin. 61 224101Google Scholar
[4] Grigor’ev A D, Muchkaev V Y 2018 J. Commun. Technol. Electron. 63 577Google Scholar
[5] Li R J, Ruan C J, Zhang H F, Fahad A K, Shan S Y, He Y B 2019 J. Infrared Millim. Terahertz Waves 40 5
[6] Ma T L, Zhao D, Zhang Z C, Xiang Y D, Wang W L 2014 IEEE Trans. Plasma Sci. 47 1762
[7] 阮存军, 王树忠 2010 真空电子技术 6 12Google Scholar
Ruan C J, Wang S Z 2010 Vacuum Electronics 6 12Google Scholar
[8] Burtsev A A, Danilushkin A V 2014 Tech. Phys. Lett. 44 793
[9] Pasour J, Nguyen K, Wright E, Balkcum A, Atkinson J, Cusick M, Levush B 2011 IEEE Trans. Electron Dev. 58 1792Google Scholar
[10] Pasour J, Wright E, Nguyen K T, Balkcum A, Wood F N, Myers R E, Levush B 2014 IEEE Trans. Electron Dev. 61 1630Google Scholar
[11] Shin Y M, Wang J X, Barnett L R, Luhmann N C 2011 IEEE Trans. Electron Dev. 58 251Google Scholar
[12] Gamzina D, Barnett L R, Ravani B, Luhmann N C 2017 IEEE Trans. Electron Dev. 64 2675Google Scholar
[13] Wang J X, Li X X, Rui L S, Liu Z, Liu G, Jiang W, Wu Z W, Hu Y L, Luo Y 2019 IEEE International Vacuum Electronics Conference Busan, South Korea, April 29–May 1, 2019 p324
[14] Wilks S, Katsouleas T, Dawson J M, Chen P, Su J J 1987 IEEE Trans. Plasma Sci. 15 210Google Scholar
[15] 刘振帮, 赵欲聪, 黄华, 金晓, 雷禄容 2015 64 108404Google Scholar
Liu Z B, Zhao Y C, Huang H, Jin X, Lei L R 2015 Acta Phys. Sin. 64 108404Google Scholar
[16] Zhao Y C, Li S F, Huang H, Liu Z B, Wang Z L, Dan Z Y, Li X Y, Wei Y Y, Gong Y B 2015 IEEE Trans. Plasma Sci. 43 1862Google Scholar
[17] 范植开, 刘庆想, 刘锡三, 周传民, 胡海膺 1999 强激光与粒子束 11 633
Fan Z K, Liu Q X, Liu X S, Zhou C M, Hu H Y 1999 High Power Laser and Particle Beams 11 633
[18] Lemke R W, Clark M C, Marder B M 1994 J. Appl. Phys. 75 5423
[19] 范植开, 刘庆想, 刘锡三, 何琥, 周传民 1999 强激光与粒子束 11 482
Fan Z K, Liu Q X, Liu X S, He H, Zhou C M 1999 High Power Laser and Particle Beams 11 482
[20] Marcum J 1946 J. Appl. Phys. 17 4Google Scholar
[21] Marder B M, Clark M C, Bacon L D, Hoffman J M, Lemke R W, Coleman P D 1992 IEEE Trans. Plasma Sci. 20 312Google Scholar
[22] Carlsten B E, Haynes W B 1996 IEEE Trans. Plasma Sci. 24 1249Google Scholar
[23] 范植开 1999 博士学位论文 (北京: 中国工程物理研究院)
Fan Z K 1999 Ph. D. Dissertation (Beijing: China Academy of Engineering Physics) (in Chinese)
[24] 曾造金, 胡林林, 马乔生, 蒋艺, 陈洪斌 2019 68 084101Google Scholar
Zeng Z J, Hu L L, Ma Q S, Jiang Y, Chen H B 2019 Acta Phys. Sin. 68 084101Google Scholar
[25] Webster D L 1939 J. Appl. Phys. 10 501Google Scholar
[26] Webster D L 1942 J. Appl. Phys. 13 786Google Scholar
[27] Webster D L 1939 J. Appl. Phys. 10 864Google Scholar
[28] Ramot S 1939 Proceedings of the I.R.E. Washington, USA, April 28–28, 1939 p757
[29] Ramot S 1939 Phys. Rev. 56 276Google Scholar
[30] 贝克著 (王以德 译) 1965 空间电荷波与慢电磁波 (北京: 科学出版社) 第100—150页
Beck A H (translated by Wang Y D) 1965 Space-Charge Waves and Slow Electromagnetic Waves (Beijing: Science Press) pp100–150 (in Chinese)
[31] 谢家麟, 赵永翔 1966 速调管群聚理论 (北京: 科学出版社) 第33—177页
Xie J L, Zhao Y X 1966 Bunching Theory of Klystron (Beijing: Science Press) pp33–177 (in Chinese)
[32] 哈依柯夫 著 (黄高年 译) 1980 速调管放大器 (北京: 国防工业出版社) 第99—105页
Eckertova L (translated by Hang G N) 1980 Клиотронные усилители (Beijing: National Defense Industry Press) pp99–105 (in Chinese)
[33] 曾造金 2014 硕士学位论文 (成都: 电子科技大学)
Zeng Z J 2014 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China) (in Chinese)
[34] 丁耀根 2008 大功率速调管的理论与计算模拟 (北京: 国防工业出版社) 第53—66页
Ding Y G 2008 Theory and Computer Simulation of High Power Klystron (Beijing: National Defense Industry Press) pp53–66 (in Chinese)
[35] 吴洋, 许州, 谢鸿全, 李正红, 马乔生 2015 64 084102Google Scholar
Wu Y, Xu Z, Xie H Q, Li Z H, Ma Q S 2015 Acta Phys. Sin. 64 084102Google Scholar
-
表 1 W波段带状注扩展互作用速调管高频结构参数
Table 1. Structural parameters of W-band sheet beam extended interaction klystron amplifier.
谐振腔 纵向工作模式 谐振频率/GHz 固有品质因数Q0 外观品质因数Qext 起始位置/mm 输入腔 2π模 94.52 562 627 0 中间腔1 2π模 94.56 555 ∞ 3.04 中间腔2 2π模 94.56 555 ∞ 6.08 输出腔 2π模 94.52 562 627 9.22 -
[1] Chen S Y, Ruan C J, Yong W, Zhang C Q, Zhao D, Yang X D, Wang S Z 2014 IEEE Trans. Plasma Sci. 42 91Google Scholar
[2] Chang Z W, Meng L, Yin Y, Wang B, Li H L, Rauf A, Ullah S, Bi L J, Peng R B 2018 IEEE Trans. Electron Dev. 65 1179Google Scholar
[3] 吴洋, 许州, 周霖, 李文君, 唐传祥 2012 61 224101Google Scholar
Wu Y, Xu Z, Zhou L, Li W J, Tang C X 2012 Acta Phys. Sin. 61 224101Google Scholar
[4] Grigor’ev A D, Muchkaev V Y 2018 J. Commun. Technol. Electron. 63 577Google Scholar
[5] Li R J, Ruan C J, Zhang H F, Fahad A K, Shan S Y, He Y B 2019 J. Infrared Millim. Terahertz Waves 40 5
[6] Ma T L, Zhao D, Zhang Z C, Xiang Y D, Wang W L 2014 IEEE Trans. Plasma Sci. 47 1762
[7] 阮存军, 王树忠 2010 真空电子技术 6 12Google Scholar
Ruan C J, Wang S Z 2010 Vacuum Electronics 6 12Google Scholar
[8] Burtsev A A, Danilushkin A V 2014 Tech. Phys. Lett. 44 793
[9] Pasour J, Nguyen K, Wright E, Balkcum A, Atkinson J, Cusick M, Levush B 2011 IEEE Trans. Electron Dev. 58 1792Google Scholar
[10] Pasour J, Wright E, Nguyen K T, Balkcum A, Wood F N, Myers R E, Levush B 2014 IEEE Trans. Electron Dev. 61 1630Google Scholar
[11] Shin Y M, Wang J X, Barnett L R, Luhmann N C 2011 IEEE Trans. Electron Dev. 58 251Google Scholar
[12] Gamzina D, Barnett L R, Ravani B, Luhmann N C 2017 IEEE Trans. Electron Dev. 64 2675Google Scholar
[13] Wang J X, Li X X, Rui L S, Liu Z, Liu G, Jiang W, Wu Z W, Hu Y L, Luo Y 2019 IEEE International Vacuum Electronics Conference Busan, South Korea, April 29–May 1, 2019 p324
[14] Wilks S, Katsouleas T, Dawson J M, Chen P, Su J J 1987 IEEE Trans. Plasma Sci. 15 210Google Scholar
[15] 刘振帮, 赵欲聪, 黄华, 金晓, 雷禄容 2015 64 108404Google Scholar
Liu Z B, Zhao Y C, Huang H, Jin X, Lei L R 2015 Acta Phys. Sin. 64 108404Google Scholar
[16] Zhao Y C, Li S F, Huang H, Liu Z B, Wang Z L, Dan Z Y, Li X Y, Wei Y Y, Gong Y B 2015 IEEE Trans. Plasma Sci. 43 1862Google Scholar
[17] 范植开, 刘庆想, 刘锡三, 周传民, 胡海膺 1999 强激光与粒子束 11 633
Fan Z K, Liu Q X, Liu X S, Zhou C M, Hu H Y 1999 High Power Laser and Particle Beams 11 633
[18] Lemke R W, Clark M C, Marder B M 1994 J. Appl. Phys. 75 5423
[19] 范植开, 刘庆想, 刘锡三, 何琥, 周传民 1999 强激光与粒子束 11 482
Fan Z K, Liu Q X, Liu X S, He H, Zhou C M 1999 High Power Laser and Particle Beams 11 482
[20] Marcum J 1946 J. Appl. Phys. 17 4Google Scholar
[21] Marder B M, Clark M C, Bacon L D, Hoffman J M, Lemke R W, Coleman P D 1992 IEEE Trans. Plasma Sci. 20 312Google Scholar
[22] Carlsten B E, Haynes W B 1996 IEEE Trans. Plasma Sci. 24 1249Google Scholar
[23] 范植开 1999 博士学位论文 (北京: 中国工程物理研究院)
Fan Z K 1999 Ph. D. Dissertation (Beijing: China Academy of Engineering Physics) (in Chinese)
[24] 曾造金, 胡林林, 马乔生, 蒋艺, 陈洪斌 2019 68 084101Google Scholar
Zeng Z J, Hu L L, Ma Q S, Jiang Y, Chen H B 2019 Acta Phys. Sin. 68 084101Google Scholar
[25] Webster D L 1939 J. Appl. Phys. 10 501Google Scholar
[26] Webster D L 1942 J. Appl. Phys. 13 786Google Scholar
[27] Webster D L 1939 J. Appl. Phys. 10 864Google Scholar
[28] Ramot S 1939 Proceedings of the I.R.E. Washington, USA, April 28–28, 1939 p757
[29] Ramot S 1939 Phys. Rev. 56 276Google Scholar
[30] 贝克著 (王以德 译) 1965 空间电荷波与慢电磁波 (北京: 科学出版社) 第100—150页
Beck A H (translated by Wang Y D) 1965 Space-Charge Waves and Slow Electromagnetic Waves (Beijing: Science Press) pp100–150 (in Chinese)
[31] 谢家麟, 赵永翔 1966 速调管群聚理论 (北京: 科学出版社) 第33—177页
Xie J L, Zhao Y X 1966 Bunching Theory of Klystron (Beijing: Science Press) pp33–177 (in Chinese)
[32] 哈依柯夫 著 (黄高年 译) 1980 速调管放大器 (北京: 国防工业出版社) 第99—105页
Eckertova L (translated by Hang G N) 1980 Клиотронные усилители (Beijing: National Defense Industry Press) pp99–105 (in Chinese)
[33] 曾造金 2014 硕士学位论文 (成都: 电子科技大学)
Zeng Z J 2014 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China) (in Chinese)
[34] 丁耀根 2008 大功率速调管的理论与计算模拟 (北京: 国防工业出版社) 第53—66页
Ding Y G 2008 Theory and Computer Simulation of High Power Klystron (Beijing: National Defense Industry Press) pp53–66 (in Chinese)
[35] 吴洋, 许州, 谢鸿全, 李正红, 马乔生 2015 64 084102Google Scholar
Wu Y, Xu Z, Xie H Q, Li Z H, Ma Q S 2015 Acta Phys. Sin. 64 084102Google Scholar
计量
- 文章访问数: 7231
- PDF下载量: 61
- 被引次数: 0