-
本文研究了不同磁场环境下一维Heisenberg XXZ自旋链中两量子比特的热量子失协特性. 在四种不同的磁场环境下: 1) B1=B2=0 (无磁场); 2) B1≠0, B2=0 (磁场只作用于其中一个量子比特); 3) B1=B2 (均匀磁场); 4) B1=-B2 (非均匀磁场), 对分别作用在每个量子比特上的磁场B1和B2对其量子关联的影响作了详细的讨论, 且数值计算和比较了其量子失协和量子纠缠的异同. 结果显示: 在有限温度下, 量子失协相比于量子纠缠更普遍, 且非均匀磁场相比于均匀磁场对量子失协和量子纠缠更有用, 更有利于量子通讯和量子信息处理过程.The quantum discord of a two-qubit one-dimonsional Heisenberg XXZ spinchain in thermal equilibrium depends on the temperature T, when subjected to different magnetic fields, with B1 and B2 acting separately on the qubit, is studied in this paper. Four cases are considered here: (1) B1=B2 = 0 (without magnetic field); (2) B1≠0,B2=0 (only one qubit in magnetic field); (3) B1=B2 (homogeneous magnetic field); (4) B1=-B2 (inhomogeneous magnetic field). The similarities and difference between quantum discord and quantum entanglement are calculated and discussed in detail. Results show that the quantum discord is more robust than quantum entanglement against temperature, and the effect of inhomogeneous magnetic field is preferable for the quantum communications and quantum information processing, as compared with the effect of homogeneous magnetic field.
-
Keywords:
- quantum correlations /
- entanglement /
- quantum discord
[1] Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) p58
[2] Bennett C H, Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[3] Ekert A K 1991 Phys. Rev. Lett. 67 661
[4] Bennett C H, Sicincenzo D P 2000 Nature 404 247
[5] Ollivier H, Zurek W H 2001 Phys. Rev. Lett. 88 017901
[6] Datta A, Shaji A, Caves C M 2008 Phys. Rev. Lett. 100 050502
[7] Lanyon B P, Barbieri M, Almedia M P, White A G 2008 Phys. Rev. Lett. 101 200501
[8] Horodecki M, Horodecki P, Horodecki R, Oppenheim J, Sen A, Sen U, Synak-Radtke B 2005 Phys. Rev. A 71 062307
[9] Dillenschneider R, Lutz E 2009 Europhys. Lett. 88 50003
[10] Rodriguez-Rosario C A, Modi K, Kuah A, Shaji A, Sudarshan E C G 2008 J. Phys. A: Math. Theor 41 205301
[11] Shabani A, Lidar D A 2009 Phys. Rev. Lett. 102 100402
[12] Datta A, Shaji S, Caves C M 2008 Phys. Rev. Lett. 100 050502
[13] Werlang T, Souza S, Fanchini F F, Villas-Boas C J 2009 Phys. Rev. A 80 024103
[14] Ding B F, Wang X Y, Liu J F, Yan L, Zhao H P 2011 Chin. Phys. Lett. 28 104216
[15] Ren J, Wu Y Z, Zhu S Q 2012 Chin. Phys. Lett. 29 060305
[16] Chakrabarty I, Agrawal P, Pati A K 2011 Eur. Phys. J. D 65 605
[17] Dhar H S, Ghosh R, Sen (De) A, Sen U 2012 EuroPhys. Lett. 98 30013
[18] Hassan1 A S M, Lari B, Joag P S 2012 Phys. Rev. A 85 024302
[19] Dillenschneider R 2008 Phys. Rev. B 78 224413
[20] Sun Z, Lu X M, Song L J 2010 J. Phys. B: At. Mol. Opt. Phys. 43 215504
[21] Wang L C, Shen J, Yi X X 2011 Chin. Phys. B 20 050306
[22] Sarandy M S 2009 Phys. Rev. A 80 022108
[23] Werlang T, Trippe C, Ribeiro G A P, Rigolin G 2010 Phys. Rev. Lett. 105 095702
[24] Guo J L, Mi Y J, Zhang J, Song H S 2011 J. Phys. B: At. Mol. Opt. Phys. 44 065504
[25] Guo J L, Li Z D, Sun Y B 2011 Opt. Commun. 284 1461
[26] Werlang T, Rigolin G 2010 Phys. Rev. A 81 044101
[27] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[28] Groisman B, Popescu S, Winter A 2005 Phys. Rev. A 72 032317
-
[1] Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) p58
[2] Bennett C H, Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[3] Ekert A K 1991 Phys. Rev. Lett. 67 661
[4] Bennett C H, Sicincenzo D P 2000 Nature 404 247
[5] Ollivier H, Zurek W H 2001 Phys. Rev. Lett. 88 017901
[6] Datta A, Shaji A, Caves C M 2008 Phys. Rev. Lett. 100 050502
[7] Lanyon B P, Barbieri M, Almedia M P, White A G 2008 Phys. Rev. Lett. 101 200501
[8] Horodecki M, Horodecki P, Horodecki R, Oppenheim J, Sen A, Sen U, Synak-Radtke B 2005 Phys. Rev. A 71 062307
[9] Dillenschneider R, Lutz E 2009 Europhys. Lett. 88 50003
[10] Rodriguez-Rosario C A, Modi K, Kuah A, Shaji A, Sudarshan E C G 2008 J. Phys. A: Math. Theor 41 205301
[11] Shabani A, Lidar D A 2009 Phys. Rev. Lett. 102 100402
[12] Datta A, Shaji S, Caves C M 2008 Phys. Rev. Lett. 100 050502
[13] Werlang T, Souza S, Fanchini F F, Villas-Boas C J 2009 Phys. Rev. A 80 024103
[14] Ding B F, Wang X Y, Liu J F, Yan L, Zhao H P 2011 Chin. Phys. Lett. 28 104216
[15] Ren J, Wu Y Z, Zhu S Q 2012 Chin. Phys. Lett. 29 060305
[16] Chakrabarty I, Agrawal P, Pati A K 2011 Eur. Phys. J. D 65 605
[17] Dhar H S, Ghosh R, Sen (De) A, Sen U 2012 EuroPhys. Lett. 98 30013
[18] Hassan1 A S M, Lari B, Joag P S 2012 Phys. Rev. A 85 024302
[19] Dillenschneider R 2008 Phys. Rev. B 78 224413
[20] Sun Z, Lu X M, Song L J 2010 J. Phys. B: At. Mol. Opt. Phys. 43 215504
[21] Wang L C, Shen J, Yi X X 2011 Chin. Phys. B 20 050306
[22] Sarandy M S 2009 Phys. Rev. A 80 022108
[23] Werlang T, Trippe C, Ribeiro G A P, Rigolin G 2010 Phys. Rev. Lett. 105 095702
[24] Guo J L, Mi Y J, Zhang J, Song H S 2011 J. Phys. B: At. Mol. Opt. Phys. 44 065504
[25] Guo J L, Li Z D, Sun Y B 2011 Opt. Commun. 284 1461
[26] Werlang T, Rigolin G 2010 Phys. Rev. A 81 044101
[27] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[28] Groisman B, Popescu S, Winter A 2005 Phys. Rev. A 72 032317
计量
- 文章访问数: 5933
- PDF下载量: 521
- 被引次数: 0