-
研究强度相关耦合双Jaynes-Cummings模型中, 两运动原子初始处于最大纠缠态、光场初始处于单模热态时, 强度相关耦合、热光场平均光子数以及原子运动对两原子的纠缠和量子失谐的影响. 结果表明: 考虑强度相关耦合时, 纠缠和量子失谐均出现周期性地消失和回复现象, 并且, 回复以后的纠缠和量子失谐能达到初始值. 腔场温度的升高会加速纠缠和量子失谐的消失. 此外, 原子运动的场模结构参数对该模型中的纠缠和量子失谐影响很大, 其值选择合适时, 两个原子能够自始至终地保持纠缠或量子失谐状态.
-
关键词:
- 强度相关耦合 /
- 双Jaynes-Cummings模型 /
- 纠缠 /
- 量子失谐
Considering a double J-C model with intensity-dependent coupling, we have studied the effects of the intensity-dependent coupling, the mean photon numbers and the atomic motion, on the entanglement and quantum discord between the two two-level atoms when the moving atoms are initially in a maximally entangled state and the fields are in the single-mode thermal fields. The results show that, the entanglement and quantum discord disappear and revive periodically, and can have up to their starting values after revival. A rise in cavity temperature accelerates the death of the entanglement and quantum discord. In addition, the field-mode structural parameter has a strong effect on the entanglement and quantum discord in the system. When the field-mode structural parameter takes a suitable value, the entanglement and quantum discord of the two atoms can be kept from start to finish.-
Keywords:
- intensity-dependent coupling /
- double Jaynes-Cummings model /
- entanglement /
- quantum discord
[1] Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge University Press: Cambridge)
[2] Briegel H J, Drr W, Cirac J I, Zoller P 1998 Phys. Rev. Lett. 81 5932
[3] Rosenfeld W, Hocke F, Henkel F, Krug M, Volz J, Weber M, Weinfurter H 2008 Phys. Rev. Lett. 101 260403
[4] Yu T, Eberly J H 2004 Phys. Rev. Lett. 93 140404
[5] Yönac M, Eberly J H 2008 Opt. Lett. 33 270
[6] Lettner M, Mcke M, Riedl S, Vo C, Hahn C, Baur S, Bochmann J, Ritter S, Drr S, Rempe G 2011 Phys. Rev. Lett. 106 210503
[7] Yönac M, Eberly J H 2010 Phys. Rev. A 82 022321
[8] Man Z X, Xia Y J, An N B 2012 Phys. Rev. A 86 012325
[9] Lu D M 2012 Acta Phys. Sin. 61 180301 (in Chinese) [卢道明 2012 61 180301]
[10] Jaynes E T, Cummings F W 1963 Proc IEEE 51 89
[11] Buck B, Sukumar C V 1981 Phys. Lett. A 81 132
[12] Barzanjeh Sh, Naderi M H, Soltanolkotabi M 2011 Phys. Rev. A 84 063850
[13] Liu X J, Zhou B J, Liu Y M, Jiang C L 2012 Acta Phys. Sin. 61 230301 (in Chinese) [刘小娟, 周并举, 刘一曼, 姜春蕾 2012 61 230301]
[14] El-Orany Faisal A A 2006 J. Mod. Opt. 53 1699
[15] Xiong H N, Guo H 2007 Chin. Phys. Lett. 24 1805
[16] Dakic B, Vedral V, Brukner C 2010 Phys. Rev. Lett. 105 190502
[17] Knill E, Laflamme R 1998 Phys. Rev. Lett. 81 5672
[18] Bihama E, Brassardb G, Kenigsberga D, Mor T 2004 Theor. Comput. Sci. 320 15
[19] Ollivier H, Zurek W H 2001 Phys. Rev. Lett. 88 017901
[20] Lanyon B P, Barbieri M, Almeida M P, White A G 2008 Phys. Rev. Lett. 101 200501
[21] Datta A, Shaji A, Caves Carlton M 2008 Phys. Rev. Lett. 100 050502
[22] Cui J, Fan H 2010 J. Phys. A: Math. Theor. 43 045305
[23] Allegra M, Giorda P, Montorsi A 2011 Phys. Rev. B 84 245133
[24] Xu J W, Chen Q H 2012 Chin. Phys. B 21 040302
[25] Man Z X, Xia Y J, An N B 2011 J. Phys. B 44 095504
[26] Blandino R, Genoni M G, Etesse J, Barbieri M, Paris M G A, Grangier P, Tualle-Brouri R 2012 Phys. Rev. Lett. 109 180402
[27] Schlicher R R 1989 Opt. Commum. 70 97
[28] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[29] Hill S 1997 Phys. Rev. Lett. 78 5022
[30] Vedral V 2002 Rev. Mod. Phys. 74 197
[31] Henderson L, Vedral V 2001 J. Phys. A 34 6899
-
[1] Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge University Press: Cambridge)
[2] Briegel H J, Drr W, Cirac J I, Zoller P 1998 Phys. Rev. Lett. 81 5932
[3] Rosenfeld W, Hocke F, Henkel F, Krug M, Volz J, Weber M, Weinfurter H 2008 Phys. Rev. Lett. 101 260403
[4] Yu T, Eberly J H 2004 Phys. Rev. Lett. 93 140404
[5] Yönac M, Eberly J H 2008 Opt. Lett. 33 270
[6] Lettner M, Mcke M, Riedl S, Vo C, Hahn C, Baur S, Bochmann J, Ritter S, Drr S, Rempe G 2011 Phys. Rev. Lett. 106 210503
[7] Yönac M, Eberly J H 2010 Phys. Rev. A 82 022321
[8] Man Z X, Xia Y J, An N B 2012 Phys. Rev. A 86 012325
[9] Lu D M 2012 Acta Phys. Sin. 61 180301 (in Chinese) [卢道明 2012 61 180301]
[10] Jaynes E T, Cummings F W 1963 Proc IEEE 51 89
[11] Buck B, Sukumar C V 1981 Phys. Lett. A 81 132
[12] Barzanjeh Sh, Naderi M H, Soltanolkotabi M 2011 Phys. Rev. A 84 063850
[13] Liu X J, Zhou B J, Liu Y M, Jiang C L 2012 Acta Phys. Sin. 61 230301 (in Chinese) [刘小娟, 周并举, 刘一曼, 姜春蕾 2012 61 230301]
[14] El-Orany Faisal A A 2006 J. Mod. Opt. 53 1699
[15] Xiong H N, Guo H 2007 Chin. Phys. Lett. 24 1805
[16] Dakic B, Vedral V, Brukner C 2010 Phys. Rev. Lett. 105 190502
[17] Knill E, Laflamme R 1998 Phys. Rev. Lett. 81 5672
[18] Bihama E, Brassardb G, Kenigsberga D, Mor T 2004 Theor. Comput. Sci. 320 15
[19] Ollivier H, Zurek W H 2001 Phys. Rev. Lett. 88 017901
[20] Lanyon B P, Barbieri M, Almeida M P, White A G 2008 Phys. Rev. Lett. 101 200501
[21] Datta A, Shaji A, Caves Carlton M 2008 Phys. Rev. Lett. 100 050502
[22] Cui J, Fan H 2010 J. Phys. A: Math. Theor. 43 045305
[23] Allegra M, Giorda P, Montorsi A 2011 Phys. Rev. B 84 245133
[24] Xu J W, Chen Q H 2012 Chin. Phys. B 21 040302
[25] Man Z X, Xia Y J, An N B 2011 J. Phys. B 44 095504
[26] Blandino R, Genoni M G, Etesse J, Barbieri M, Paris M G A, Grangier P, Tualle-Brouri R 2012 Phys. Rev. Lett. 109 180402
[27] Schlicher R R 1989 Opt. Commum. 70 97
[28] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[29] Hill S 1997 Phys. Rev. Lett. 78 5022
[30] Vedral V 2002 Rev. Mod. Phys. 74 197
[31] Henderson L, Vedral V 2001 J. Phys. A 34 6899
计量
- 文章访问数: 7610
- PDF下载量: 547
- 被引次数: 0