搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弱磁场下三阱光学超晶格中自旋为1的超冷原子特性研究

秦帅锋 郑公平 马骁 李海燕 童晶晶 杨博

引用本文:
Citation:

弱磁场下三阱光学超晶格中自旋为1的超冷原子特性研究

秦帅锋, 郑公平, 马骁, 李海燕, 童晶晶, 杨博

Ultracold spin-1 atoms in three-well optical superlattice under a weak magnetic field

Qin Shuai-Feng, Zheng Gong-Ping, Ma Xiao, Li Hai-Yan, Tong Jing-Jing, Yang Bo
PDF
导出引用
  • 双阱光学超晶格中的超冷原子是近期冷原子物理领域的研究热点. 本文推广提出了实现三阱光学超晶格的方案, 并采用精确对角化的方法分别研究了弱磁场下对称三阱 光学超晶格中铁磁性和反铁磁性的自旋为1的原子系统的基态, 发现二者的相图很不相同: 反铁磁性原子对应的相图中没有沿磁场方向总自旋磁量子数为±2的基态, 而铁磁性原子对应的相图中可能有. 在负的二次塞曼能量区域, 铁磁性原子的相图中只有完全极化态. 分析了可控参数影响基态的物理本质. 由于这些量子自旋态可以通过调节外磁场和光势垒的高度非常简便而精确地控制, 适合用来研究自旋纠缠.
    Ultracold atoms trapped in an optical lattice of double-well potential, the so-called optical superlattice, have received much attention in the field of cold atoms. A protocol generalized to three-well optical superlattice is suggested in this paper. The ground-state diagrams of ultracold spin-1 atoms trapped in a symmetric three-well optical superlattice in a weak magnetic field are studied based on the exact diagonalization. It is shown that the ground-state diagrams are remarkably different for the ferromagnetic and antiferromagnetic atoms. There does not exist the type of ground state for the antiferromagnetic interaction atoms, where the magnetic quantum number of the total spin of the system along the external magnetic field are ±2. But for the ferromagnetic interaction atoms, there do exist. In addition, there exist only the fully polarized ground-states for the ferromagnetic atoms in the negative quadratic-Zeeman-energy region. The physicsal origin of the dependence of the ground states on the controllable parameters are analyzed. These quantum spin-states can be controlled easily and exactly by modulating the external magnetic field and the height of the optical barrier, which may be a tool for the study of spin-entanglement.
    • 基金项目: 国家自然科学基金 (批准号: 11274095)、河南省科技创新杰出青年计划 (批准号: 114100510021) 和河南省教育厅自然科学基础研究计划 (批准号: 2011B140010)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11274095), the Program of ISTTCPHP (Grant No. 114100510021), and the NSBRPHPC (Grant No. 2011B140010).
    [1]

    Greiner M, Mandel O, Esslinger T, Hänsch T W, Bloch I 2002 Nature 419 51

    [2]

    Lewenstein M, Sanpera A, Ahufinger V, Damski B, Sen A, Sen U 2007 Advances in Physics 56 243

    [3]

    Sebby-Strabley J, Anderlini M, Jessen P S, Porto J V 2006 Phys. Rev. A 73 033605

    [4]

    Anderlini M, Lee P J, Brown B L, Sebby-Strabley J, Phillips W D, Porto J V 2007 Nature 448 452

    [5]

    Fölling S, Trotzky S, Cheinet P, Feld M, Saers R, Widera A, Mller T, Bloch I 2007 Nature 448 1029

    [6]

    Cheinet P, Trotzky S, Feld M, Schnorrberger U, Moreno-Cardoner M, Fölling S, Bloch I 2008 Phys. Rev. Lett. 101 090404

    [7]

    Trotzky S, Chen Y A, Schnorrberger U, Cheinet P, Bloch I 2010 Phys. Rev. Lett. 105 265303

    [8]

    Wagner A, Bruder C, Demler E 2011 Phys. Rev. A 84 063636

    [9]

    Zhang Y B, Harri M, Kalle-Antti S 2005 Chin. Phys. Lett. 22 536

    [10]

    Pang W, Li Z B, Bao C G 2007 Chin. Phys. Lett. 24 2745

    [11]

    Chen B L, Kou S P, Zhang Y B, Chen S 2010 Phys. Rev. A 81 053608

    [12]

    Liang J Q, Liu J L, Li W D, Li Z J 2009 Phys. Rev. A 79 033617

    [13]

    Pethick C J, Smith H 2002 Bose-Einstein Condensation in Dilute Gases (Cambridge: Cambridge University Press) p331

    [14]

    Zheng G P, Tong Y G, Wang F L 2010 Phys. Rev. A 81 063633

    [15]

    Gerbier F, Widera A, Fölling S, Mandel O, Bloch I 2006 Phys. Rev. A 73 041602

    [16]

    Ueda M 2012 Annu. Rev. Condens. Matter Phys. 3 263

    [17]

    Ho T L 1998 Phys. Rev. Lett. 81 742

    [18]

    Demler E, Zhou F 2002 Phys. Rev. Lett. 88 163001

    [19]

    Hao Y J, Liang J Q 2006 Chin. Phys. 15 1161

    [20]

    Yan D, Song L J, Chen D W 2009 Acta Phys. Sin. 58 3679 (in Chinese) [严冬, 宋立军, 陈殿伟 2009 58 3679]

    [21]

    Xu Y, Fan W, Chen B, Li Z X 2011 Acta Phys. Sin. 60 060305 (in Chinese) [徐岩, 樊炜, 陈兵, 李照鑫 2011 60 060305]

  • [1]

    Greiner M, Mandel O, Esslinger T, Hänsch T W, Bloch I 2002 Nature 419 51

    [2]

    Lewenstein M, Sanpera A, Ahufinger V, Damski B, Sen A, Sen U 2007 Advances in Physics 56 243

    [3]

    Sebby-Strabley J, Anderlini M, Jessen P S, Porto J V 2006 Phys. Rev. A 73 033605

    [4]

    Anderlini M, Lee P J, Brown B L, Sebby-Strabley J, Phillips W D, Porto J V 2007 Nature 448 452

    [5]

    Fölling S, Trotzky S, Cheinet P, Feld M, Saers R, Widera A, Mller T, Bloch I 2007 Nature 448 1029

    [6]

    Cheinet P, Trotzky S, Feld M, Schnorrberger U, Moreno-Cardoner M, Fölling S, Bloch I 2008 Phys. Rev. Lett. 101 090404

    [7]

    Trotzky S, Chen Y A, Schnorrberger U, Cheinet P, Bloch I 2010 Phys. Rev. Lett. 105 265303

    [8]

    Wagner A, Bruder C, Demler E 2011 Phys. Rev. A 84 063636

    [9]

    Zhang Y B, Harri M, Kalle-Antti S 2005 Chin. Phys. Lett. 22 536

    [10]

    Pang W, Li Z B, Bao C G 2007 Chin. Phys. Lett. 24 2745

    [11]

    Chen B L, Kou S P, Zhang Y B, Chen S 2010 Phys. Rev. A 81 053608

    [12]

    Liang J Q, Liu J L, Li W D, Li Z J 2009 Phys. Rev. A 79 033617

    [13]

    Pethick C J, Smith H 2002 Bose-Einstein Condensation in Dilute Gases (Cambridge: Cambridge University Press) p331

    [14]

    Zheng G P, Tong Y G, Wang F L 2010 Phys. Rev. A 81 063633

    [15]

    Gerbier F, Widera A, Fölling S, Mandel O, Bloch I 2006 Phys. Rev. A 73 041602

    [16]

    Ueda M 2012 Annu. Rev. Condens. Matter Phys. 3 263

    [17]

    Ho T L 1998 Phys. Rev. Lett. 81 742

    [18]

    Demler E, Zhou F 2002 Phys. Rev. Lett. 88 163001

    [19]

    Hao Y J, Liang J Q 2006 Chin. Phys. 15 1161

    [20]

    Yan D, Song L J, Chen D W 2009 Acta Phys. Sin. 58 3679 (in Chinese) [严冬, 宋立军, 陈殿伟 2009 58 3679]

    [21]

    Xu Y, Fan W, Chen B, Li Z X 2011 Acta Phys. Sin. 60 060305 (in Chinese) [徐岩, 樊炜, 陈兵, 李照鑫 2011 60 060305]

  • [1] 卿煜林, 彭小莉, 文林, 胡爱元. 自旋为1/2的双层平方晶格阻挫模型的基态相变.  , 2022, 71(3): 037501. doi: 10.7498/aps.71.20211584
    [2] 卿煜林, 彭小莉, 胡爱元. 自旋为1的双层平方晶格阻挫模型的相变.  , 2022, 71(4): 047501. doi: 10.7498/aps.71.20211685
    [3] 卿煜林, 彭小莉, 文林, 胡爱元. 自旋为1/2的双层平方晶格阻挫模型的基态相变研究.  , 2021, (): . doi: 10.7498/aps.70.20211584
    [4] 陈新龙, 门福殿, 田青松. 反常磁矩对弱磁场弱相互作用费米气体热力学性质的影响.  , 2015, 64(8): 080501. doi: 10.7498/aps.64.080501
    [5] 秦猛, 李延标, 白忠. 非均匀磁场和杂质磁场对自旋1系统量子关联的影响.  , 2015, 64(3): 030301. doi: 10.7498/aps.64.030301
    [6] 勾庆东, 李勇. He-He-Ba三原子体系弱束缚态计算.  , 2015, 64(19): 193102. doi: 10.7498/aps.64.193102
    [7] 王海啸, 郑新和, 吴渊渊, 甘兴源, 王乃明, 杨辉. 1 eV吸收带边GaInAs/GaNAs超晶格太阳能电池的阱层设计.  , 2013, 62(21): 218801. doi: 10.7498/aps.62.218801
    [8] 孙伟峰. (InAs)1/(GaSb)1超晶格原子链的第一原理研究.  , 2012, 61(11): 117104. doi: 10.7498/aps.61.117104
    [9] 邱 英, 何 军, 王彦华, 王 婧, 张天才, 王军民. 三维光学晶格中铯原子的装载与冷却.  , 2008, 57(10): 6227-6232. doi: 10.7498/aps.57.6227
    [10] 秦 猛, 田东平, 陶应娟. 自旋为1的三粒子Heisenberg XXX链中杂质对热纠缠的影响.  , 2008, 57(9): 5395-5399. doi: 10.7498/aps.57.5395
    [11] 门福殿. 弱磁场中弱相互作用费米气体的热力学性质.  , 2006, 55(4): 1622-1627. doi: 10.7498/aps.55.1622
    [12] 李开航, 黄美纯. 应变超晶格(ZnS)1/(ZnSe)1的光学性质.  , 1997, 46(10): 2066-2070. doi: 10.7498/aps.46.2066
    [13] 侯永田, 何国山, 张树霖, 彭中灵, 李杰, 袁诗鑫. (CdSe)1(ZnSe)3/ZnSe短周期超晶格多量子阱的共振Ramam谱.  , 1993, 42(10): 1707-1711. doi: 10.7498/aps.42.1707
    [14] 项金真, 夏建白. 磁场下超晶格的子带结构及光跃迁.  , 1988, 37(12): 1915-1924. doi: 10.7498/aps.37.1915
    [15] 马红孺, 蔡建华. 磁性金属超晶格中的自旋波.  , 1984, 33(3): 444-446. doi: 10.7498/aps.33.444
    [16] 张裕恒, 王军. 超导弱连接的电压磁场关系(Ⅱ).  , 1984, 33(7): 959-966. doi: 10.7498/aps.33.959
    [17] 张裕恒, 王军. 超导弱连接的电压磁场关系(Ⅰ).  , 1984, 33(7): 952-958. doi: 10.7498/aps.33.952
    [18] 黄永仁. 弱耦合自旋1/2二核系统二维动态NMR谱.  , 1982, 31(9): 1141-1151. doi: 10.7498/aps.31.1141
    [19] 吴苍生, 戴光曦, 刘功谆, 丁渝. 弱磁场中质子的自由进动和一个野外测磁场的实验.  , 1965, 21(6): 1175-1187. doi: 10.7498/aps.21.1175
    [20] 时学丹, 罗辽复, 黄念宁. 自旋为1的粒子的电磁结构.  , 1960, 16(6): 331-337. doi: 10.7498/aps.16.331
计量
  • 文章访问数:  6102
  • PDF下载量:  481
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-06
  • 修回日期:  2013-01-30
  • 刊出日期:  2013-06-05

/

返回文章
返回
Baidu
map