-
本文利用分子动力学方法模拟了液体在固体表面的 接触角及液固界面热阻, 并探讨了二者之间的关系. 通过分别改变液固结合强度和固体的原子性质来分析接触角和界面热阻的关系及变化趋势. 模拟结果显示增强液固间相互作用时, 接触角减小的同时界面热阻也随之单调减小; 而改变固体原子间结合强度和原子质量时, 接触角几乎保持不变, 但界面热阻显著改变. 固体原子间结合强度和原子质量影响界面热阻的原因是其改变了固体的振动频率分布, 导致液固原子间的振动耦合程度发生变化. 本文的结果表明界面热阻不仅与由接触角所表征的液固结合强度有关, 还与液固原子间的振动耦合程度有关. 接触角与界面热阻间不存在单值的对应关系, 不能单一地将接触角作为液固界面热阻的评价标准.With the fast development of nanotechnology, the solid-liquid interfacial thermal resistance draws increasing research interest due to its importance in nanoscale energy transport. The contact angle is an important quantity characterizing the interfacial properties and is easy to be measured experimentally. Previous researchers have tried to correlate the contact angle to the interfacial thermal resistance. Using molecular dynamics simulation, we have calculated the contact angle and interfacial thermal resistance at a solid/liquid interface and discuss the relationship between the two quantities. The solid/liquid bonding strength and the solid properties are varied to test their effects on both contact angle and interfacial thermal resistance. The simulation results demonstrate that with increasing solid/liquid bonding strength, both the contact angle and interfacial thermal resistance decrease. However, the bonding strength between solid atoms and the solid atomic mass influence the interfacial resistance remarkably while they have little effect on the contact angle. It is because the variations of the solid atomic mass and the bonding strength between solid atoms change the frequency distribution of the vibration of the solid atoms, resulting in a difference in the thermal vibrational coupling between solid and liquid atoms. Our study indicates that the interfacial thermal resistance is not only related to the interfacial solid-liquid bonding strength which is characterized by the contact angle, but also the thermal vibrational coupling between solid and liquid atoms. There is not a simple relationship between the contact angle and the interfacial thermal resistance. The contact angle could not be used as an exclusive criterion for solid-liquid interfacial resistance estimation.
-
Keywords:
- solid-liquid interface /
- contact angle /
- interfacial thermal resistance /
- molecular dynamics simulation
[1] Cahill D G, Ford W K, Goodson K E, Majumdar A, Mariset H J, Merlin R, Phillpot S R 2010 J. Appl. Phys. 93 793
[2] Swartz E T, Pohl R O 1989 Rev. Mod. Phys. 61 605
[3] Barrat J L, Chiaruttini F 2003 Mol. Phys. 101 1605
[4] Xue L, Keblinski P, Phillipot S R, Choi S U S, Eastman J A 2003 J. Chem. Phys. 118 337
[5] Ge Z B, Cahill D G, Braun P V 2006 Phys. Rev. Lett. 96 186101
[6] Gu C Y, Di Q F, Shi L Y, Wu F, Wang W C, Yu Z B 2008 Acta Phys. Sin. 57 3071 (in Chinese) [顾春元, 狄勤丰, 施利毅, 吴非, 王文昌, 余祖斌 2008 57 3071]
[7] Ma H M, Hong L, Yin Y, Xu J, Ye H 2011 Acta Phys. Sin. 60 098105 (in Chinese) [马海敏, 洪亮, 尹伊, 许坚, 叶辉 2011 60 098105]
[8] Gong M G, Xu X L, Cao Z L, Liu Y Y, Zhu H M 2009 Acta Phys. Sin. 58 1885 (in Chinese) [公茂刚, 许小亮, 曹自立, 刘远越, 朱海明 2009 58 1885]
[9] Murad S, Puri I K 2008 Appl. Phys. Lett. 92 133105
[10] Wang Y, Keblinski P 2011 Appl. Phys. Lett. 99 073112
[11] Shenogina N, Godawat R, Keblinski P, Garde S 2009 Phys. Rev. Lett. 102 156101
[12] Shi B, Dhir V K 2009 J. Chem. Phys. 130 034705
[13] Leroy F, Mller-Plathe F 2010 J. Chem. Phys. 133 044110
[14] Voronov R S, Papavassiliou D V, Lee L L 2006 J. Chem. Phys. 124 204701
[15] Sedlmeier F, Janecek J, Sendner C, Bocquet L, Netz R R, Horinek D 2008 Biointerphases 3 23
[16] Rowlinson J, Widom B 1982 Molecular Theory of Capillarity (Oxford: Oxford University Press) p86
[17] Maruyama S, Kimura T 1999 Therm. Sci. Eng. 7 63
[18] Kikugawa G, Ohara T, Kawaguchi T, Torigoe E, Hagiwara Y, Matsumoto Y 2009 J. Appl. Phys. 130 074706
[19] Issa K M, Mohamad A A 2012 Phys. Rev. E 85 031602
[20] Huxtable S T, Cahill D G, Shenogin S, Keblinski P 2005 Chem. Phys. Lett. 407 129
-
[1] Cahill D G, Ford W K, Goodson K E, Majumdar A, Mariset H J, Merlin R, Phillpot S R 2010 J. Appl. Phys. 93 793
[2] Swartz E T, Pohl R O 1989 Rev. Mod. Phys. 61 605
[3] Barrat J L, Chiaruttini F 2003 Mol. Phys. 101 1605
[4] Xue L, Keblinski P, Phillipot S R, Choi S U S, Eastman J A 2003 J. Chem. Phys. 118 337
[5] Ge Z B, Cahill D G, Braun P V 2006 Phys. Rev. Lett. 96 186101
[6] Gu C Y, Di Q F, Shi L Y, Wu F, Wang W C, Yu Z B 2008 Acta Phys. Sin. 57 3071 (in Chinese) [顾春元, 狄勤丰, 施利毅, 吴非, 王文昌, 余祖斌 2008 57 3071]
[7] Ma H M, Hong L, Yin Y, Xu J, Ye H 2011 Acta Phys. Sin. 60 098105 (in Chinese) [马海敏, 洪亮, 尹伊, 许坚, 叶辉 2011 60 098105]
[8] Gong M G, Xu X L, Cao Z L, Liu Y Y, Zhu H M 2009 Acta Phys. Sin. 58 1885 (in Chinese) [公茂刚, 许小亮, 曹自立, 刘远越, 朱海明 2009 58 1885]
[9] Murad S, Puri I K 2008 Appl. Phys. Lett. 92 133105
[10] Wang Y, Keblinski P 2011 Appl. Phys. Lett. 99 073112
[11] Shenogina N, Godawat R, Keblinski P, Garde S 2009 Phys. Rev. Lett. 102 156101
[12] Shi B, Dhir V K 2009 J. Chem. Phys. 130 034705
[13] Leroy F, Mller-Plathe F 2010 J. Chem. Phys. 133 044110
[14] Voronov R S, Papavassiliou D V, Lee L L 2006 J. Chem. Phys. 124 204701
[15] Sedlmeier F, Janecek J, Sendner C, Bocquet L, Netz R R, Horinek D 2008 Biointerphases 3 23
[16] Rowlinson J, Widom B 1982 Molecular Theory of Capillarity (Oxford: Oxford University Press) p86
[17] Maruyama S, Kimura T 1999 Therm. Sci. Eng. 7 63
[18] Kikugawa G, Ohara T, Kawaguchi T, Torigoe E, Hagiwara Y, Matsumoto Y 2009 J. Appl. Phys. 130 074706
[19] Issa K M, Mohamad A A 2012 Phys. Rev. E 85 031602
[20] Huxtable S T, Cahill D G, Shenogin S, Keblinski P 2005 Chem. Phys. Lett. 407 129
计量
- 文章访问数: 7899
- PDF下载量: 1942
- 被引次数: 0