搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

接触角与液固界面热阻关系的分子动力学模拟

葛宋 陈民

引用本文:
Citation:

接触角与液固界面热阻关系的分子动力学模拟

葛宋, 陈民

A molecular dynamics simulation on the relationship between contact angle and solid-liquid interfacial thermal resistance

Ge Song, Chen Min
PDF
导出引用
  • 本文利用分子动力学方法模拟了液体在固体表面的 接触角及液固界面热阻, 并探讨了二者之间的关系. 通过分别改变液固结合强度和固体的原子性质来分析接触角和界面热阻的关系及变化趋势. 模拟结果显示增强液固间相互作用时, 接触角减小的同时界面热阻也随之单调减小; 而改变固体原子间结合强度和原子质量时, 接触角几乎保持不变, 但界面热阻显著改变. 固体原子间结合强度和原子质量影响界面热阻的原因是其改变了固体的振动频率分布, 导致液固原子间的振动耦合程度发生变化. 本文的结果表明界面热阻不仅与由接触角所表征的液固结合强度有关, 还与液固原子间的振动耦合程度有关. 接触角与界面热阻间不存在单值的对应关系, 不能单一地将接触角作为液固界面热阻的评价标准.
    With the fast development of nanotechnology, the solid-liquid interfacial thermal resistance draws increasing research interest due to its importance in nanoscale energy transport. The contact angle is an important quantity characterizing the interfacial properties and is easy to be measured experimentally. Previous researchers have tried to correlate the contact angle to the interfacial thermal resistance. Using molecular dynamics simulation, we have calculated the contact angle and interfacial thermal resistance at a solid/liquid interface and discuss the relationship between the two quantities. The solid/liquid bonding strength and the solid properties are varied to test their effects on both contact angle and interfacial thermal resistance. The simulation results demonstrate that with increasing solid/liquid bonding strength, both the contact angle and interfacial thermal resistance decrease. However, the bonding strength between solid atoms and the solid atomic mass influence the interfacial resistance remarkably while they have little effect on the contact angle. It is because the variations of the solid atomic mass and the bonding strength between solid atoms change the frequency distribution of the vibration of the solid atoms, resulting in a difference in the thermal vibrational coupling between solid and liquid atoms. Our study indicates that the interfacial thermal resistance is not only related to the interfacial solid-liquid bonding strength which is characterized by the contact angle, but also the thermal vibrational coupling between solid and liquid atoms. There is not a simple relationship between the contact angle and the interfacial thermal resistance. The contact angle could not be used as an exclusive criterion for solid-liquid interfacial resistance estimation.
    • 基金项目: 国家自然科学基金(批准号: 51076078)和国家重点基础研究发展计划(批准号: 2009CB219805) 资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51076078), and the National Basic Research Program of China (Grant No. 2009CB219805).
    [1]

    Cahill D G, Ford W K, Goodson K E, Majumdar A, Mariset H J, Merlin R, Phillpot S R 2010 J. Appl. Phys. 93 793

    [2]

    Swartz E T, Pohl R O 1989 Rev. Mod. Phys. 61 605

    [3]

    Barrat J L, Chiaruttini F 2003 Mol. Phys. 101 1605

    [4]

    Xue L, Keblinski P, Phillipot S R, Choi S U S, Eastman J A 2003 J. Chem. Phys. 118 337

    [5]

    Ge Z B, Cahill D G, Braun P V 2006 Phys. Rev. Lett. 96 186101

    [6]

    Gu C Y, Di Q F, Shi L Y, Wu F, Wang W C, Yu Z B 2008 Acta Phys. Sin. 57 3071 (in Chinese) [顾春元, 狄勤丰, 施利毅, 吴非, 王文昌, 余祖斌 2008 57 3071]

    [7]

    Ma H M, Hong L, Yin Y, Xu J, Ye H 2011 Acta Phys. Sin. 60 098105 (in Chinese) [马海敏, 洪亮, 尹伊, 许坚, 叶辉 2011 60 098105]

    [8]

    Gong M G, Xu X L, Cao Z L, Liu Y Y, Zhu H M 2009 Acta Phys. Sin. 58 1885 (in Chinese) [公茂刚, 许小亮, 曹自立, 刘远越, 朱海明 2009 58 1885]

    [9]

    Murad S, Puri I K 2008 Appl. Phys. Lett. 92 133105

    [10]

    Wang Y, Keblinski P 2011 Appl. Phys. Lett. 99 073112

    [11]

    Shenogina N, Godawat R, Keblinski P, Garde S 2009 Phys. Rev. Lett. 102 156101

    [12]

    Shi B, Dhir V K 2009 J. Chem. Phys. 130 034705

    [13]

    Leroy F, Mller-Plathe F 2010 J. Chem. Phys. 133 044110

    [14]

    Voronov R S, Papavassiliou D V, Lee L L 2006 J. Chem. Phys. 124 204701

    [15]

    Sedlmeier F, Janecek J, Sendner C, Bocquet L, Netz R R, Horinek D 2008 Biointerphases 3 23

    [16]

    Rowlinson J, Widom B 1982 Molecular Theory of Capillarity (Oxford: Oxford University Press) p86

    [17]

    Maruyama S, Kimura T 1999 Therm. Sci. Eng. 7 63

    [18]

    Kikugawa G, Ohara T, Kawaguchi T, Torigoe E, Hagiwara Y, Matsumoto Y 2009 J. Appl. Phys. 130 074706

    [19]

    Issa K M, Mohamad A A 2012 Phys. Rev. E 85 031602

    [20]

    Huxtable S T, Cahill D G, Shenogin S, Keblinski P 2005 Chem. Phys. Lett. 407 129

  • [1]

    Cahill D G, Ford W K, Goodson K E, Majumdar A, Mariset H J, Merlin R, Phillpot S R 2010 J. Appl. Phys. 93 793

    [2]

    Swartz E T, Pohl R O 1989 Rev. Mod. Phys. 61 605

    [3]

    Barrat J L, Chiaruttini F 2003 Mol. Phys. 101 1605

    [4]

    Xue L, Keblinski P, Phillipot S R, Choi S U S, Eastman J A 2003 J. Chem. Phys. 118 337

    [5]

    Ge Z B, Cahill D G, Braun P V 2006 Phys. Rev. Lett. 96 186101

    [6]

    Gu C Y, Di Q F, Shi L Y, Wu F, Wang W C, Yu Z B 2008 Acta Phys. Sin. 57 3071 (in Chinese) [顾春元, 狄勤丰, 施利毅, 吴非, 王文昌, 余祖斌 2008 57 3071]

    [7]

    Ma H M, Hong L, Yin Y, Xu J, Ye H 2011 Acta Phys. Sin. 60 098105 (in Chinese) [马海敏, 洪亮, 尹伊, 许坚, 叶辉 2011 60 098105]

    [8]

    Gong M G, Xu X L, Cao Z L, Liu Y Y, Zhu H M 2009 Acta Phys. Sin. 58 1885 (in Chinese) [公茂刚, 许小亮, 曹自立, 刘远越, 朱海明 2009 58 1885]

    [9]

    Murad S, Puri I K 2008 Appl. Phys. Lett. 92 133105

    [10]

    Wang Y, Keblinski P 2011 Appl. Phys. Lett. 99 073112

    [11]

    Shenogina N, Godawat R, Keblinski P, Garde S 2009 Phys. Rev. Lett. 102 156101

    [12]

    Shi B, Dhir V K 2009 J. Chem. Phys. 130 034705

    [13]

    Leroy F, Mller-Plathe F 2010 J. Chem. Phys. 133 044110

    [14]

    Voronov R S, Papavassiliou D V, Lee L L 2006 J. Chem. Phys. 124 204701

    [15]

    Sedlmeier F, Janecek J, Sendner C, Bocquet L, Netz R R, Horinek D 2008 Biointerphases 3 23

    [16]

    Rowlinson J, Widom B 1982 Molecular Theory of Capillarity (Oxford: Oxford University Press) p86

    [17]

    Maruyama S, Kimura T 1999 Therm. Sci. Eng. 7 63

    [18]

    Kikugawa G, Ohara T, Kawaguchi T, Torigoe E, Hagiwara Y, Matsumoto Y 2009 J. Appl. Phys. 130 074706

    [19]

    Issa K M, Mohamad A A 2012 Phys. Rev. E 85 031602

    [20]

    Huxtable S T, Cahill D G, Shenogin S, Keblinski P 2005 Chem. Phys. Lett. 407 129

  • [1] 宗志成, 潘东楷, 邓世琛, 万骁, 杨哩娜, 马登科, 杨诺. 混合失配模型预测金属/半导体界面热导.  , 2023, 72(3): 034401. doi: 10.7498/aps.72.20221981
    [2] 韦国翠, 田泽安. 不同尺寸Cu64Zr36纳米液滴的快速凝固过程分子动力学模拟.  , 2021, 70(24): 246401. doi: 10.7498/aps.70.20211235
    [3] 潘伶, 张昊, 林国斌. 纳米液滴撞击柱状固体表面动态行为的分子动力学模拟.  , 2021, 70(13): 134704. doi: 10.7498/aps.70.20210094
    [4] 韦昭召, 马骁, 柯常波, 张新平. Fe合金FCC-BCC原子尺度台阶型马氏体相界面迁移行为的分子动力学模拟研究.  , 2020, 69(13): 136102. doi: 10.7498/aps.69.20191903
    [5] 梅涛, 陈占秀, 杨历, 朱洪漫, 苗瑞灿. 非对称纳米通道内界面热阻的分子动力学研究.  , 2020, 69(22): 224701. doi: 10.7498/aps.69.20200491
    [6] 张龙艳, 徐进良, 雷俊鹏. 尺寸效应对微通道内固液界面温度边界的影响.  , 2019, 68(2): 020201. doi: 10.7498/aps.68.20181876
    [7] 叶学民, 李永康, 李春曦. 平衡接触角对受热液滴在水平壁面上铺展特性的影响.  , 2016, 65(10): 104704. doi: 10.7498/aps.65.104704
    [8] 徐威, 兰忠, 彭本利, 温荣福, 马学虎. 微液滴在不同能量表面上润湿状态的分子动力学模拟.  , 2015, 64(21): 216801. doi: 10.7498/aps.64.216801
    [9] 林林, 袁儒强, 张欣欣, 王晓东. 液滴在梯度微结构表面上的铺展动力学分析.  , 2015, 64(15): 154705. doi: 10.7498/aps.64.154705
    [10] 王宇翔, 陈硕. 微粗糙结构表面液滴浸润特性的多体耗散粒子动力学研究.  , 2015, 64(5): 054701. doi: 10.7498/aps.64.054701
    [11] 司丽娜, 王晓力. 纳米沟槽表面黏着接触过程的分子动力学模拟研究.  , 2014, 63(23): 234601. doi: 10.7498/aps.63.234601
    [12] 王琛, 宋海洋, 安敏荣. 界面旋转角对双晶镁力学性质影响的分子动力学模拟.  , 2014, 63(4): 046201. doi: 10.7498/aps.63.046201
    [13] 景蔚萱, 王兵, 牛玲玲, 齐含, 蒋庄德, 陈路加, 周帆. ZnO纳米线薄膜的合成参数、表面形貌和接触角关系研究.  , 2013, 62(21): 218102. doi: 10.7498/aps.62.218102
    [14] 郑小青, 杨洋, 孙得彦. 模型二元有序合金固液界面结构的分子动力学研究.  , 2013, 62(1): 017101. doi: 10.7498/aps.62.017101
    [15] 徐升华, 王林伟, 孙祉伟, 王彩霞. 容器内角处流体界面特性与Surface Evolver程序适用性的研究.  , 2012, 61(16): 166801. doi: 10.7498/aps.61.166801
    [16] 张明焜, 陈硕, 尚智. 带凹槽的微通道中液滴运动数值模拟.  , 2012, 61(3): 034701. doi: 10.7498/aps.61.034701
    [17] 强洪夫, 刘开, 陈福振. 液滴在气固交界面变形移动问题的光滑粒子流体动力学模拟.  , 2012, 61(20): 204701. doi: 10.7498/aps.61.204701
    [18] 谢红献, 于涛, 刘波. 温度对镍基单晶高温合金γ/γ'相界面上错配位错运动影响的分子动力学研究.  , 2011, 60(4): 046104. doi: 10.7498/aps.60.046104
    [19] 颜克凤, 李小森, 陈朝阳, 李 刚, 李志宝. 用分子动力学模拟甲烷水合物热激法结合化学试剂法分解.  , 2007, 56(11): 6727-6735. doi: 10.7498/aps.56.6727
    [20] 曹治觉, 夏伯丽, 张 云. 论小接触角下实现滴状冷凝的可能性.  , 2003, 52(10): 2427-2431. doi: 10.7498/aps.52.2427
计量
  • 文章访问数:  7899
  • PDF下载量:  1942
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-11-09
  • 修回日期:  2013-01-30
  • 刊出日期:  2013-06-05

/

返回文章
返回
Baidu
map