-
采用高温固相法制备了LiSrBO3:xEu3+ 荧光粉, 并通过XRD, 红外(FITR) 和荧光光谱(PL) 等对其表征. 结果表明, LiSrBO3: Eu3+ 荧光粉可被波长为395 nm 的紫外线和466 nm 的蓝光有效激发, 且发射主波长为612 nm (Eu3+的电偶极跃迁5D0 →7F2) 的红光. 研究了Eu3+ 掺杂浓度对LiSrBO3: Eu3+ 材料发光强度的影响, Eu3+ 掺杂浓度为6% 时样品的发射强度最大, 并且证实Eu3+ 之间的能量传递机制为电偶极子- 电偶极子相互作用. Li+, Na+, K+ 作为电荷补偿剂的引入全部导致LiSrBO3: Eu3+ 材料发射强度增强, 其中, Li+ 的引入要优于Na+ 和K+. 少量Al3+的掺杂降低了Eu3+ 所处格位的对称性, 增强了Eu3+ 的612 nm 的电偶极发射, 改善了LiSrBO3: Eu3+ 红色材料的色纯度.LiSrBO3:xEu3+ phosphors were synthesized by conventional solid-state reaction and were systematically characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and photoluminescence spectroscopy. The excitation and emission spectra reveal that the LiSrBO3:Eu3+ phosphor can be effectively excited by ultraviolet (395 nm) and blue (466 nm) light and exhibits a satisfactory red performance which peaked at around 612 nm corresponding to the 5D0 → 7F2 transitions of Eu3+. The concentration quenching mechanism was verified to be a dipole–dipole interaction. The dopant R+ (R+ = Li+, Na+ and K+) as charge compensator can further enhance luminescence intensity, and the emission intensity of the phosphor doped Li+ is higher than that doped with Na+ or K+. Introduction of Al3+ reduced the symmetry of the crystal field and increased the emission of 612 nm (5D0 → 7F2), which improved the chromaticity coordinates of LiSrBO3: Eu3+ phosphor.
-
Keywords:
- white LED /
- photoluminescence /
- concentration quenching /
- charge compensator
[1] Gouveia-Neto A S, da Silva A F, Bueno L A 2012 J. Lumin. 132 299
[2] Hou J S, Yin X, Fang Y Z 2012 Opt. Mater. 34 1394
[3] Furman J D, Gundiah G, Page K 2008 Chem. Phys. Iett. 465 67
[4] Kim J S, Jeon P E, Park Y H 2004 Appl. Phys. Lett. 85 3696
[5] N Saito, N Sonoyama, T Sakata 1996 Bull. Chem. Soc. 69 2191
[6] Tang H X, L S C 2011 Acta Phys Sin 60 037805 (in Chinese) [唐红霞, 吕树臣 2011 60 037805]
[7] Cao F B, Tian Y W, Chen Y J 2009 J. Lumin. 129 585
[8] Li Y Q, van Steen J E J, Van Krevel J W H 2006 J. Alloys Compd. 417 273
[9] Xie R J, Naoto H, Takayuki S 2006 Chem. Mater. 18 5578
[10] Luo W X, Huang S H, You F T, Peng H S 2007 Acta Phys. Sin. 56 1765 (in Chinese) [罗文雄, 黄世华, 由芳田, 彭洪尚 2007 56 1765]
[11] Cheng W D, Zhang H, Lin Q S 2001 Chem. Mater. 13 1841
[12] Hen G P, Zhang J, Yao R H 2010 Acta Phys Chim. Sin. 26 685 (in Chinese) [何贵平, 张弜, 姚若河 2010 物理化学学报 26 685]
[13] Wang J L, Wang D J, Li L 2006 Chin. J. Lumin. 27 463 (in Chinese) [王继磊, 王达健, 李岚 2006 发光学报 27 463]
[14] Dexter D L, Schulman J H 1954 J. Chem. Phys. 22 1063
[15] Tian L H, Mho S I 2003 Solid State Commun. 125 647
-
[1] Gouveia-Neto A S, da Silva A F, Bueno L A 2012 J. Lumin. 132 299
[2] Hou J S, Yin X, Fang Y Z 2012 Opt. Mater. 34 1394
[3] Furman J D, Gundiah G, Page K 2008 Chem. Phys. Iett. 465 67
[4] Kim J S, Jeon P E, Park Y H 2004 Appl. Phys. Lett. 85 3696
[5] N Saito, N Sonoyama, T Sakata 1996 Bull. Chem. Soc. 69 2191
[6] Tang H X, L S C 2011 Acta Phys Sin 60 037805 (in Chinese) [唐红霞, 吕树臣 2011 60 037805]
[7] Cao F B, Tian Y W, Chen Y J 2009 J. Lumin. 129 585
[8] Li Y Q, van Steen J E J, Van Krevel J W H 2006 J. Alloys Compd. 417 273
[9] Xie R J, Naoto H, Takayuki S 2006 Chem. Mater. 18 5578
[10] Luo W X, Huang S H, You F T, Peng H S 2007 Acta Phys. Sin. 56 1765 (in Chinese) [罗文雄, 黄世华, 由芳田, 彭洪尚 2007 56 1765]
[11] Cheng W D, Zhang H, Lin Q S 2001 Chem. Mater. 13 1841
[12] Hen G P, Zhang J, Yao R H 2010 Acta Phys Chim. Sin. 26 685 (in Chinese) [何贵平, 张弜, 姚若河 2010 物理化学学报 26 685]
[13] Wang J L, Wang D J, Li L 2006 Chin. J. Lumin. 27 463 (in Chinese) [王继磊, 王达健, 李岚 2006 发光学报 27 463]
[14] Dexter D L, Schulman J H 1954 J. Chem. Phys. 22 1063
[15] Tian L H, Mho S I 2003 Solid State Commun. 125 647
计量
- 文章访问数: 6522
- PDF下载量: 736
- 被引次数: 0